




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆江西撫州市臨川區(qū)中考數(shù)學最后沖刺模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列“數(shù)字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個2.已知,代數(shù)式的值為()A.-11 B.-1 C.1 D.113.如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE折疊,當點B的對應點B′落在∠ADC的角平分線上時,則點B′到BC的距離為()A.1或2 B.2或3 C.3或4 D.4或54.觀察下列圖中所示的一系列圖形,它們是按一定規(guī)律排列的,依照此規(guī)律,第2019個圖形共有()個〇.A.6055 B.6056 C.6057 D.60585.如圖,點E是四邊形ABCD的邊BC延長線上的一點,則下列條件中不能判定AD∥BE的是()A. B. C. D.6.下列運算正確的是()A.a(chǎn)2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=67.計算tan30°的值等于()A.3B.33C.338.如圖,矩形是由三個全等矩形拼成的,與,,,,分別交于點,設,,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.129.下列各曲線中表示y是x的函數(shù)的是()A. B. C. D.10.某種超薄氣球表面的厚度約為,這個數(shù)用科學記數(shù)法表示為()A. B. C. D.11.下列性質中菱形不一定具有的性質是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形12.在△ABC中,AB=3,BC=4,AC=2,D,E,F(xiàn)分別為AB,BC,AC中點,連接DF,F(xiàn)E,則四邊形DBEF的周長是(
)A.5 B.7 C.9 D.11二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根,則m的值為______.14.如果拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),那么m的值為_____.15.若,,則代數(shù)式的值為__________.16.在數(shù)軸上與表示11的點距離最近的整數(shù)點所表示的數(shù)為_____.17.王英同學從A地沿北偏西60°方向走100米到B地,再從B地向正南方向走200米到C地,此時王英同學離A地的距離是_____米.18.(11·湖州)如圖,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點,BC∥x軸,交y軸于點C.動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設四邊形OMPN的面積為S,P點運動時間為t,則S關于t的函數(shù)圖象大致為三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)解方程:20.(6分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經(jīng)過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.21.(6分)“千年古都,大美西安”.某校數(shù)學興趣小組就“最想去的西安旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,(景點對應的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動物園E:曲江海洋館).下面是根據(jù)調查結果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調查的學生總人數(shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學生,請估計“最想去景點B”的學生人數(shù).22.(8分)某景區(qū)內(nèi)從甲地到乙地的路程是,小華步行從甲地到乙地游玩,速度為,走了后,中途休息了一段時間,然后繼續(xù)按原速前往乙地,景區(qū)從甲地開往乙地的電瓶車每隔半小時發(fā)一趟車,速度是,若小華與第1趟電瓶車同時出發(fā),設小華距乙地的路程為,第趟電瓶車距乙地的路程為,為正整數(shù),行進時間為.如圖畫出了,與的函數(shù)圖象.(1)觀察圖,其中,;(2)求第2趟電瓶車距乙地的路程與的函數(shù)關系式;(3)當時,在圖中畫出與的函數(shù)圖象;并觀察圖象,得出小華在休息后前往乙地的途中,共有趟電瓶車駛過.23.(8分)如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.求證:DE是⊙O的切線;若AE=6,∠D=30°,求圖中陰影部分的面積.24.(10分)如圖,經(jīng)過原點的拋物線y=﹣x2+2mx(m>0)與x軸的另一個交點為A,過點P(1,m)作直線PA⊥x軸于點M,交拋物線于點B.記點B關于拋物線對稱軸的對稱點為C(點B、C不重合),連接CB、CP.(I)當m=3時,求點A的坐標及BC的長;(II)當m>1時,連接CA,若CA⊥CP,求m的值;(III)過點P作PE⊥PC,且PE=PC,當點E落在坐標軸上時,求m的值,并確定相對應的點E的坐標.25.(10分)海中有一個小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.26.(12分)如圖,在中,,平分,交于點,點在上,經(jīng)過兩點,交于點,交于點.求證:是的切線;若的半徑是,是弧的中點,求陰影部分的面積(結果保留和根號).27.(12分)某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:銷售時段銷售數(shù)量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進價、售價均保持不變,利潤=銷售收入-進貨成本)求A,B兩種型號的電風扇的銷售單價.若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、D【解析】
根據(jù)整式的運算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數(shù)式中即可得到此題答案.【詳解】解:由題意可知:,原式故選:D.【點睛】此題考查整式的混合運算,解題的關鍵在于利用整式的運算法則進行化簡求得代數(shù)式的值3、A【解析】
連接B′D,過點B′作B′M⊥AD于M.設DM=B′M=x,則AM=7-x,根據(jù)等腰直角三角形的性質和折疊的性質得到:(7-x)2=25-x2,通過解方程求得x的值,易得點B′到BC的距離.【詳解】解:如圖,連接B′D,過點B′作B′M⊥AD于M,∵點B的對應點B′落在∠ADC的角平分線上,∴設DM=B′M=x,則AM=7﹣x,又由折疊的性質知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,則點B′到BC的距離為2或1.故選A.【點睛】本題考查的是翻折變換的性質,掌握翻折變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.4、D【解析】
設第n個圖形有a個O(n為正整數(shù)),觀察圖形,根據(jù)各圖形中O的個數(shù)的變化可找出"a=1+3n(n為正整數(shù))",再代入a=2019即可得出結論【詳解】設第n個圖形有an個〇(n為正整數(shù)),觀察圖形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴an=1+3n(n為正整數(shù)),∴a2019=1+3×2019=1.故選:D.【點睛】此題考查規(guī)律型:圖形的變化,解題關鍵在于找到規(guī)律5、A【解析】
利用平行線的判定方法判斷即可得到結果.【詳解】∵∠1=∠2,∴AB∥CD,選項A符合題意;∵∠3=∠4,∴AD∥BC,選項B不合題意;∵∠D=∠5,∴AD∥BC,選項C不合題意;∵∠B+∠BAD=180°,∴AD∥BC,選項D不合題意,故選A.【點睛】此題考查了平行線的判定,熟練掌握平行線的判定方法是解本題的關鍵.6、D【解析】
運用正確的運算法則即可得出答案.【詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【點睛】本題考查了四則運算法則,熟悉掌握是解決本題的關鍵.7、C【解析】tan30°=338、B【解析】
由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質,就可以求出,從而可以求出.【詳解】∵矩形AEHC是由三個全等矩形拼成的,
∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,
∴四邊形BEFD、四邊形DFGC是平行四邊形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,
∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【點睛】本題考查了矩形的性質,平行四邊形的判定和性質,相似三角形的判定與性質,三角形的面積公式,得出S2=4S1,S3=9S1是解題關鍵.9、D【解析】根據(jù)函數(shù)的意義可知:對于自變量x的任何值,y都有唯一的值與之相對應,故D正確.故選D.10、A【解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】,故選:A.【點睛】本題考查了用科學記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.11、C【解析】
根據(jù)菱形的性質:①菱形具有平行四邊形的一切性質;②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質12、B【解析】試題解析:∵D、E、F分別為AB、BC、AC中點,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-1【解析】
根據(jù)關于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根可知△=0,求出m的取值即可.【詳解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案為-1.【點睛】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的兩個實數(shù)根;②當△=0時,方程有兩個相等的兩個實數(shù)根;③當△<0時,方程無實數(shù)根.14、2【解析】
把點(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【詳解】∵拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案為2.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,解題的關鍵是找出二次函數(shù)圖象上的點的坐標滿足的關系式.15、-12【解析】分析:對所求代數(shù)式進行因式分解,把,,代入即可求解.詳解:,,,故答案為:點睛:考查代數(shù)式的求值,掌握提取公因式法和公式法進行因式分解是解題的關鍵.16、3【解析】11≈3.317,且11在3和4之間,∵3.317-3=0.317,4-3.317=0.683,且0.683>0.317,∴11距離整數(shù)點3最近.17、100【解析】先在直角△ABE中利用三角函數(shù)求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.解:如圖,作AE⊥BC于點E.∵∠EAB=30°,AB=100,∴BE=50,AE=50.∵BC=200,∴CE=1.在Rt△ACE中,根據(jù)勾股定理得:AC=100.即此時王英同學離A地的距離是100米.故答案為100.解一般三角形的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.18、A【解析】試題分析:①當點P在OA上運動時,OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數(shù),開口向上;②當點P在AB上運動時,設P點坐標為(x,y),則S=xy=k,為定值,故B、D選項錯誤;③當點P在BC上運動時,S隨t的增大而逐漸減小,故C選項錯誤.故選A.考點:1.反比例函數(shù)綜合題;2.動點問題的函數(shù)圖象.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、x=-4是方程的解【解析】
分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】∴x=-4,當x=-4時,∴x=-4是方程的解【點睛】本題考查了分式方程的解法,(1)解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.(2)解分式方程一定注意要驗根.20、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】
(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;
(2)設P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質解決問題;
(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標為(,);(2)存在.設P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當m=時,△CDP的面積存在最大值,最大值為;(3)當PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點睛】本題考核知識點:二次函數(shù)的綜合應用.解題關鍵點:靈活運用二次函數(shù)性質,運用數(shù)形結合思想.21、(1)40;(2)想去D景點的人數(shù)是8,圓心角度數(shù)是72°;(3)280.【解析】
(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調查的學生總人數(shù);(2)先計算出最想去D景點的人數(shù),再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“醉美旅游景點D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去B景點的人數(shù)所占的百分比即可.【詳解】(1)被調查的學生總人數(shù)為8÷20%=40(人);(2)最想去D景點的人數(shù)為40-8-14-4-6=8(人),補全條形統(tǒng)計圖為:扇形統(tǒng)計圖中表示“醉美旅游景點D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=280,所以估計“醉美旅游景點B“的學生人數(shù)為280人.【點睛】本題考查了條形統(tǒng)計圖:條形統(tǒng)計圖是用線段長度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.從條形圖可以很容易看出數(shù)據(jù)的大小,便于比較.也考查了扇形統(tǒng)計圖和利用樣本估計總體.22、(1)0.8;2.1;(2);(2)圖像見解析,2【解析】
(1)根據(jù)小華走了4千米后休息了一段時間和小華的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的時間,再加上1.5即為b的值;(2)先求出電瓶車的速度,再根據(jù)路程=兩地間距-速度×時間即可得出答案;(2)結合的圖象即可畫出的圖象,觀察圖象即可得出答案.【詳解】解:(1),故答案為:0.8;2.1.(2)根據(jù)題意得:電瓶車的速度為∴.(2)畫出函數(shù)圖象,如圖所示.觀察函數(shù)圖象,可知:小華在休息后前往乙地的途中,共有2趟電瓶車駛過.故答案為:2.【點睛】本題主要考查一次函數(shù)的應用,能夠從圖象上獲取有效信息是解題的關鍵.23、(1)證明見解析;(2)陰影部分的面積為.【解析】
(1)連接OC,先證明∠OAC=∠OCA,進而得到OC∥AE,于是得到OC⊥CD,進而證明DE是⊙O的切線;(2)分別求出△OCD的面積和扇形OBC的面積,利用S陰影=S△COD﹣S扇形OBC即可得到答案.【詳解】解:(1)連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵點C在圓O上,OC為圓O的半徑,∴CD是圓O的切線;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S陰影=S△COD﹣S扇形OBC∴S陰影=8﹣,∴陰影部分的面積為8﹣.24、(I)4;(II)(III)(2,0)或(0,4)【解析】
(I)當m=3時,拋物線解析式為y=-x2+6x,解方程-x2+6x=0得A(6,0),利用對稱性得到C(5,5),從而得到BC的長;(II)解方程-x2+2mx=0得A(2m,0),利用對稱性得到C(2m-1,2m-1),再根據(jù)勾股定理和兩點間的距離公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;(III)如圖,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,則根據(jù)P點坐標得到2m-2=m,解得m=2,再計算出ME=1得到此時E點坐標;作PH⊥y軸于H,如圖,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后計算出HE′得到E′點坐標.【詳解】解:(I)當m=3時,拋物線解析式為y=﹣x2+6x,當y=0時,﹣x2+6x=0,解得x1=0,x2=6,則A(6,0),拋物線的對稱軸為直線x=3,∵P(1,3),∴B(1,5),∵點B關于拋物線對稱軸的對稱點為C∴C(5,5),∴BC=5﹣1=4;(II)當y=0時,﹣x2+2mx=0,解得x1=0,x2=2m,則A(2m,0),B(1,2m﹣1),∵點B關于拋物線對稱軸的對稱點為C,而拋物線的對稱軸為直線x=m,∴C(2m﹣1,2m﹣1),∵PC⊥PA,∴PC2+AC2=PA2,∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,整理得2m2﹣5m+3=0,解得m1=1,m2=,即m的值為;(III)如圖,∵PE⊥PC,PE=PC,∴△PME≌△CBP,∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,而P(1,m)∴2m﹣2=m,解得m=2,∴ME=m﹣1=1,∴E(2,0);作PH⊥y軸于H,如圖,易得△PHE′≌△PBC,∴PH=PB=m﹣1,HE′=BC=2m﹣2,而P(1,m)∴m﹣1=1,解得m=2,∴HE′=2m﹣2=2,∴E′(0,4);綜上所述,m的值為2,點E的坐標為(2,0)或(0,4).【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征和二次函數(shù)的性質;會運用全等三角形的知識解決線段相等的問題;理解坐標與圖形性質,記住兩點間的距離公式.25、有觸礁危險,理由見解析.【解析】試題分析:過點P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根據(jù)三角函數(shù)AD,BD就可以用PD表示出來,根據(jù)AB=12海里,就得到一個關于PD的方程,求得PD.從而可以判斷如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險.試題解析:有觸礁危險.理由:過點P作PD⊥AC于D.設PD為x,在Rt△PBD中,∠PBD=90°-45°=45°.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°-60°=30°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/GXAS 830-2024經(jīng)橈動脈穿刺介入診療患者術肢管理規(guī)范
- T/CI 500-2024角膜塑形鏡驗配規(guī)程
- T/CATCM 031-2024柔毛淫羊藿種苗分級標準
- 瓷磚銷售合同簡單5篇
- T/CECS 10381-2024濾池用不銹鋼濾板及配套組件
- 上海安全生產(chǎn)知識c試題及答案
- 正規(guī)居間合同6篇
- 版民間個人借款合同4篇
- 業(yè)務員付加工染費的合同8篇
- 2025合同范本對外承包項目借款合同2篇
- 統(tǒng)編版(2024)七年級下冊《道德與法治》課本“活動課”參考答案
- 2025年呼吸內(nèi)鏡考試試題及答案
- 林海雪原考試題和答案
- T-ZSA 232-2024 特種巡邏機器人通.用技術要求
- 工貿(mào)企業(yè)安全生產(chǎn)臺賬資料
- 2025年浙江名校協(xié)作體高三語文2月聯(lián)考作文題目解析及范文:“向往”的“苦處”與“樂處”
- epc亮化合同范本
- 《ESD基礎知識培訓》課件
- 1《學會尊重》(說課稿)統(tǒng)編版道德與法治四年級下冊
- 英語青藍工程徒弟心得體會
- 數(shù)據(jù)資產(chǎn)入表的探討與思考
評論
0/150
提交評論