2024屆江西省鄱陽縣達標名校中考三模數學試題含解析_第1頁
2024屆江西省鄱陽縣達標名校中考三模數學試題含解析_第2頁
2024屆江西省鄱陽縣達標名校中考三模數學試題含解析_第3頁
2024屆江西省鄱陽縣達標名校中考三模數學試題含解析_第4頁
2024屆江西省鄱陽縣達標名校中考三模數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江西省鄱陽縣達標名校中考三模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算結果為正數的是()A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)2.﹣22×3的結果是()A.﹣5 B.﹣12 C.﹣6 D.123.某校對初中學生開展的四項課外活動進行了一次抽樣調查(每人只參加其中的一項活動),調查結果如圖所示,根據圖形所提供的樣本數據,可得學生參加科技活動的頻率是()A.0.15 B.0.2 C.0.25 D.0.34.若直線y=kx+b圖象如圖所示,則直線y=?bx+k的圖象大致是()A. B. C. D.5.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣20186.如圖,“趙爽弦圖”是由四個全等的直角三角形與中間一個小正方形拼成的一個大正方形,大正方形與小正方形的邊長之比是2∶1,若隨機在大正方形及其內部區域投針,則針孔扎到小正方形(陰影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.57.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π8.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個圓錐的側面,則這個圓錐的高為()cm.A. B. C. D.9.已知點、都在反比例函數的圖象上,則下列關系式一定正確的是()A. B. C. D.10.的負倒數是()A. B.- C.3 D.﹣3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在正方形ABCD中,等邊三角形AEF的頂點E,F分別在邊BC和CD上,則∠AEB=__________.12.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.13.不等式組x-2>0①2x-6>2②14.若一個多邊形的內角和是900o,則這個多邊形是邊形.15.不等式2x-5<7-(x-5)的解集是______________.16.計算tan260°﹣2sin30°﹣cos45°的結果為_____.17.若反比例函數的圖象與一次函數y=ax+b的圖象交于點A(﹣2,m)、B(5,n),則3a+b的值等于_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點E在小正方形的頂點上;(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點字母按逆時針順序),且面積為10,點M、N均在小正方形的頂點上;(3)連接ME,并直接寫出EM的長.19.(5分)如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y=(m≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于點C,點A(﹣2,3),點B(6,n).(1)求該反比例函數和一次函數的解析式;(2)求△AOB的面積;(3)若M(x1,y1),N(x2,y2)是反比例函數y=(m≠0)的圖象上的兩點,且x1<x2,y1<y2,指出點M、N各位于哪個象限.20.(8分)如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象交于點A(-3,m+8),B(n,-6)兩點.求一次函數與反比例函數的解析式;求△AOB的面積.21.(10分)已知關于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個實數根x1,x1.求實數k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實數k的值.22.(10分)2018年“植樹節”前夕,某小區為綠化環境,購進200棵柏樹苗和120棵棗樹苗,且兩種樹苗所需費用相同.每棵棗樹苗的進價比每棵柏樹苗的進價的2倍少5元,每棵柏樹苗的進價是多少元.23.(12分)如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙O交AB于點D,交AC于點G,直線DF是⊙O的切線,D為切點,交CB的延長線于點E.(1)求證:DF⊥AC;(2)求tan∠E的值.24.(14分)如圖,已知拋物線經過,兩點,頂點為.(1)求拋物線的解析式;(2)將繞點順時針旋轉后,點落在點的位置,將拋物線沿軸平移后經過點,求平移后所得圖象的函數關系式;(3)設(2)中平移后,所得拋物線與軸的交點為,頂點為,若點在平移后的拋物線上,且滿足的面積是面積的2倍,求點的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

分別根據有理數的加、減、乘、除運算法則計算可得.【詳解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,結果為負數;B、1﹣(﹣2)=1+2=3,結果為正數;C、1×(﹣2)=﹣1×2=﹣2,結果為負數;D、1÷(﹣2)=﹣1÷2=﹣,結果為負數;故選B.【點睛】本題主要考查有理數的混合運算,熟練掌握有理數的四則運算法則是解題的關鍵.2、B【解析】

先算乘方,再算乘法即可.【詳解】解:﹣22×3=﹣4×3=﹣1.故選:B.【點睛】本題主要考查了有理數的混合運算,熟練掌握法則是解答本題的關鍵.有理數的混合運算,先乘方,再乘除,后加減,有括號的先算括號內的.3、B【解析】讀圖可知:參加課外活動的人數共有(15+30+20+35)=100人,其中參加科技活動的有20人,所以參加科技活動的頻率是=0.2,故選B.4、A【解析】

根據一次函數y=kx+b的圖象可知k>1,b<1,再根據k,b的取值范圍確定一次函數y=?bx+k圖象在坐標平面內的位置關系,即可判斷.【詳解】解:∵一次函數y=kx+b的圖象可知k>1,b<1,

∴-b>1,∴一次函數y=?bx+k的圖象過一、二、三象限,與y軸的正半軸相交,故選:A.【點睛】本題考查了一次函數的圖象與系數的關系.函數值y隨x的增大而減小?k<1;函數值y隨x的增大而增大?k>1;一次函數y=kx+b圖象與y軸的正半軸相交?b>1,一次函數y=kx+b圖象與y軸的負半軸相交?b<1,一次函數y=kx+b圖象過原點?b=1.5、A【解析】

根據去括號法則、絕對值的性質、零指數冪的計算法則及負整數指數冪的計算法則依次計算各項即可解答.【詳解】選項A,﹣(﹣2018)=2018,故選項A正確;選項B,|﹣2018|=2018,故選項B錯誤;選項C,20180=1,故選項C錯誤;選項D,2018﹣1=,故選項D錯誤.故選A.【點睛】本題去括號法則、絕對值的性質、零指數冪的計算法則及負整數指數冪的計算法則,熟知去括號法則、絕對值的性質、零指數冪及負整數指數冪的計算法則是解決問題的關鍵.6、B【解析】

設大正方形邊長為2,則小正方形邊長為1,所以大正方形面積為4,小正方形面積為1,則針孔扎到小正方形(陰影部分)的概率是0.1.【詳解】解:設大正方形邊長為2,則小正方形邊長為1,因為面積比是相似比的平方,

所以大正方形面積為4,小正方形面積為1,

則針孔扎到小正方形(陰影部分)的概率是;故選:B.【點睛】本題考查了概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率.7、A【解析】

利用切線的性質得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據弧長公式計算劣弧的長.【詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.也考查了圓周角定理和弧長公式.8、B【解析】分析:直接利用圓錐的性質求出圓錐的半徑,進而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線長為:24cm,設圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個圓錐的高為:(cm).故選B.點睛:此題主要考查了圓錐的計算,正確得出圓錐的半徑是解題關鍵.9、A【解析】分析:根據反比例函數的性質,可得答案.詳解:由題意,得k=-3,圖象位于第二象限,或第四象限,在每一象限內,y隨x的增大而增大,∵3<6,∴x1<x2<0,故選A.點睛:本題考查了反比例函數,利用反比例函數的性質是解題關鍵.10、D【解析】

根據倒數的定義,互為倒數的兩數乘積為1,2×=1.再求出2的相反數即可解答.【詳解】根據倒數的定義得:2×=1.

因此的負倒數是-2.

故選D.【點睛】本題考查了倒數,解題的關鍵是掌握倒數的概念.二、填空題(共7小題,每小題3分,滿分21分)11、75【解析】因為△AEF是等邊三角形,所以∠EAF=60°,AE=AF,因為四邊形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案為75.12、【解析】

判斷出即是中心對稱,又是軸對稱圖形的個數,然后結合概率計算公式,計算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.13、x>4【解析】

分別解出不等式組中的每一個不等式,然后根據同大取大得出不等式組的解集.【詳解】由①得:x>2;由②得:x>4;∴此不等式組的解集為x>4;故答案為x>4.【點睛】考查了解一元一次不等式組,一元一次不等式組的解法:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分.解集的規律:同大取大;同小取小;大小小大中間找;大大小小找不到.14、七【解析】

根據多邊形的內角和公式,列式求解即可.【詳解】設這個多邊形是邊形,根據題意得,,解得.故答案為.【點睛】本題主要考查了多邊形的內角和公式,熟記公式是解題的關鍵.15、x<【解析】解:去括號得:2x-5<7-x+5,移項、合并得:3x<17,解得:x<.故答案為:x<.16、1【解析】

分別算三角函數,再化簡即可.【詳解】解:原式=-2×-×=1.【點睛】本題考查掌握簡單三角函數值,較基礎.17、0【解析】分析:本題直接把點的坐標代入解析式求得之間的關系式,通過等量代換可得到的值.詳解:分別把A(?2,m)、B(5,n),代入反比例函數的圖象與一次函數y=ax+b得?2m=5n,?2a+b=m,5a+b=n,綜合可知5(5a+b)=?2(?2a+b),25a+5b=4a?2b,21a+7b=0,即3a+b=0.故答案為:0.點睛:屬于一次函數和反比例函數的綜合題,考查反比例函數與一次函數的交點問題,比較基礎.三、解答題(共7小題,滿分69分)18、(1)畫圖見解析;(2)畫圖見解析;(3).【解析】

(1)直接利用直角三角形的性質結合勾股定理得出符合題意的圖形;(2)根據矩形的性質畫出符合題意的圖形;

(3)根據題意利用勾股定理得出結論.【詳解】(1)如圖所示;(2)如圖所示;(3)如圖所示,在直角三角形中,根據勾股定理得EM=.【點睛】本題考查了勾股定理與作圖,解題的關鍵是熟練的掌握直角三角形的性質與勾股定理.19、(1)反比例函數的解析式為y=﹣;一次函數的解析式為y=﹣x+2;(2)8;(3)點M、N在第二象限,或點M、N在第四象限.【解析】

(1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,∴反比例函數的解析式為y=﹣;把點B(6,n)代入,可得n=﹣1,∴B(6,﹣1).把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,解得,∴一次函數的解析式為y=﹣x+2;(2)∵y=﹣x+2,令y=0,則x=4,∴C(4,0),即OC=4,∴△AOB的面積=×4×(3+1)=8;(3)∵反比例函數y=﹣的圖象位于二、四象限,∴在每個象限內,y隨x的增大而增大,∵x1<x2,y1<y2,∴M,N在相同的象限,∴點M、N在第二象限,或點M、N在第四象限.【點睛】本題考查了反比例函數與一次函數的交點問題,求三角形的面積,求函數的解析式,正確掌握反比例函數的性質是解題的關鍵.20、(1)y=-,y=-2x-1(2)1【解析】試題分析:(1)將點A坐標代入反比例函數求出m的值,從而得到點A的坐標以及反比例函數解析式,再將點B坐標代入反比例函數求出n的值,從而得到點B的坐標,然后利用待定系數法求一次函數解析式求解;(2)設AB與x軸相交于點C,根據一次函數解析式求出點C的坐標,從而得到點OC的長度,再根據S△AOB=S△AOC+S△BOC列式計算即可得解.試題解析:(1)將A(﹣3,m+8)代入反比例函數y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,點A的坐標為(﹣3,2),反比例函數解析式為y=﹣,將點B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,點B的坐標為(1,﹣6),將點A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函數解析式為y=﹣2x﹣1;(2)設AB與x軸相交于點C,令﹣2x﹣1=0解得x=﹣2,所以,點C的坐標為(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考點:反比例函數與一次函數的交點問題.21、(2)k≤;(2)-2.【解析】試題分析:(2)根據方程的系數結合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實數k的取值范圍;(2)由根與系數的關系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實數k的取值范圍為k≤.(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合題意,舍去).∴實數k的值為﹣2.考點:一元二次方程根與系數的關系,根的判別式.22、15元.【解析】

首先設每棵柏樹苗的進價是x元,則每棵棗樹苗的進價是(2x-5)元,根據題意列出一元一次方程進行求解.【詳解】解:設每棵柏樹苗的進價是x元,則每棵棗樹苗的進價是(2x-5)元.根據題意,列方程得:,解得:x=15答:每棵柏樹苗的進價是15元.【點睛】此題考查了一元一次方程的應用,解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系列出方程,再求解.23、(1)證明見解析;(2)tan∠CBG=.【解析】

(1)連接OD,CD,根據圓周角定理得∠BDC=90°,由等腰三角形三線合一的性質得D為AB的中點,所以OD是中位線,由三角形中位線性質得:OD∥AC,根據切線的性質可得結論;

(2)如圖,連接BG,先證明EF∥BG,則∠CBG=∠E,求∠CBG的正切即可.【詳解】解:(1)證明:連接OD,CD,∵BC是⊙O的直徑,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位線∴OD∥AC,∵DF為⊙O的切線,∴OD⊥DF,∴DF⊥AC;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論