




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江西省南昌育華校中考二模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若正比例函數y=kx的圖象上一點(除原點外)到x軸的距離與到y軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.32.某車間20名工人日加工零件數如表所示:日加工零件數45678人數26543這些工人日加工零件數的眾數、中位數、平均數分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、63.下列計算正確的是(
).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=24.如圖,二次函數y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0,其中正確結論的個數是A.5個 B.4個 C.3個 D.2個5.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=60°,則∠2的度數是()A.60° B.50° C.40° D.30°6.4的平方根是()A.2 B.±2 C.8 D.±87.如圖,某地修建高速公路,要從A地向B地修一條隧道(點A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機從A地出發,垂直上升800米到達C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米8.觀察下列圖中所示的一系列圖形,它們是按一定規律排列的,依照此規律,第2019個圖形共有()個〇.A.6055 B.6056 C.6057 D.60589.若分式有意義,則x的取值范圍是A.x>1 B.x<1 C.x≠1 D.x≠010.已知x=2是關于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為()A.0 B.﹣1 C.1 D.211.某品牌的飲水機接通電源就進入自動程序:開機加熱到水溫100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關系,直至水溫降至30℃,飲水機關機.飲水機關機后即刻自動開機,重復上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間x(min)的關系如圖所示,水溫從100℃降到35℃所用的時間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘12.關于二次函數,下列說法正確的是()A.圖像與軸的交點坐標為 B.圖像的對稱軸在軸的右側C.當時,的值隨值的增大而減小 D.的最小值為-3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.14.如圖,在ABCD中,AB=8,P、Q為對角線AC的三等分點,延長DP交AB于點M,延長MQ交CD于點N,則CN=__________.15.如圖,在平面直角坐標系中,經過點A的雙曲線y=(x>0)同時經過點B,且點A在點B的左側,點A的橫坐標為1,∠AOB=∠OBA=45°,則k的值為_______.16.已知扇形AOB的半徑OA=4,圓心角為90°,則扇形AOB的面積為_________.17.若關于x的分式方程的解為非負數,則a的取值范圍是_____.18.已知一塊等腰三角形鋼板的底邊長為60cm,腰長為50cm,能從這塊鋼板上截得得最大圓得半徑為________cm三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“六一”期間,小張購述100只兩種型號的文具進行銷售,其中A種型號的文具進價為10元/只,售價為12元,B種型號的文具進價為15元1只,售價為23元/只.(1)小張如何進貨,使進貨款恰好為1300元?(2)如果購進A型文具的數量不少于B型文具數量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?20.(6分)圖1是一商場的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉,將右邊的門繞門軸向外面旋轉,其示意圖如圖2,求此時與之間的距離(結果保留一位小數).(參考數據:,,)21.(6分)凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優惠,優勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.求一次至少購買多少只計算器,才能以最低價購買?求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數關系式,并寫出自變量x的取值范圍;一天,甲顧客購買了46只,乙顧客購買了50只,店主發現賣46只賺的錢反而比賣50只賺的錢多,請你說明發生這一現象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?22.(8分)2013年我國多地出現霧霾天氣,某企業抓住商機準備生產空氣凈化設備,該企業決定從以下兩個投資方案中選擇一個進行投資生產,方案一:生產甲產品,每件產品成本為a元(a為常數,且40<a<100),每件產品銷售價為120元,每年最多可生產125萬件;方案二:生產乙產品,每件產品成本價為80元,每件產品銷售價為180元,每年可生產120萬件,另外,年銷售x萬件乙產品時需上交0.5x2萬元的特別關稅,在不考慮其它因素的情況下:(1)分別寫出該企業兩個投資方案的年利潤y1(萬元)、y2(萬元)與相應生產件數x(萬件)(x為正整數)之間的函數關系式,并指出自變量的取值范圍;(2)分別求出這兩個投資方案的最大年利潤;(3)如果你是企業決策者,為了獲得最大收益,你會選擇哪個投資方案?23.(8分)如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O為圓心,以OA為半徑的圓分別交AB、AC于點E、D,在BC的延長線上取點F,使得BF=EF.(1)判斷直線EF與⊙O的位置關系,并說明理由;(2)若∠A=30°,求證:DG=DA;(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.24.(10分)已知:二次函數圖象的頂點坐標是(3,5),且拋物線經過點A(1,3).(1)求此拋物線的表達式;(2)如果點A關于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.25.(10分)計算:2﹣1+|﹣|++2cos30°26.(12分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當在點A處放置標桿時,李明測得直立的標桿高AM與影子長AE正好相等,接著李明沿AC方向繼續向前走,走到點B處放置同一個標桿,測得直立標桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標桿直立時的高為1.8m,求路燈的高CD的長.27.(12分)中央電視臺的“朗讀者”節目激發了同學們的讀書熱情,為了引導學生“多讀書,讀好書“,某校對八年級部分學生的課外閱讀量進行了隨機調查,整理調查結果發現,學生課外閱讀的本書最少的有5本,最多的有8本,并根據調查結果繪制了不完整的圖表,如圖所示:本數(本)頻數(人數)頻率5a0.26180.1714b880.16合計50c我們定義頻率=,比如由表中我們可以知道在這次隨機調查中抽樣人數為50人課外閱讀量為6本的同學為18人,因此這個人數對應的頻率就是=0.1.(1)統計表中的a、b、c的值;(2)請將頻數分布表直方圖補充完整;(3)求所有被調查學生課外閱讀的平均本數;(4)若該校八年級共有600名學生,你認為根據以上調查結果可以估算分析該校八年級學生課外閱讀量為7本和8本的總人數為多少嗎?請寫出你的計算過程.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
設該點的坐標為(a,b),則|b|=1|a|,利用一次函數圖象上的點的坐標特征可得出k=±1,再利用正比例函數的性質可得出k=-1,此題得解.【詳解】設該點的坐標為(a,b),則|b|=1|a|,∵點(a,b)在正比例函數y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點睛】本題考查了一次函數圖象上點的坐標特征以及正比例函數的性質,利用一次函數圖象上點的坐標特征,找出k=±1是解題的關鍵.2、D【解析】
5出現了6次,出現的次數最多,則眾數是5;把這些數從小到大排列,中位數是第10,11個數的平均數,則中位數是(6+6)÷2=6;平均數是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.3、D【解析】分析:根據完全平方公式、積的乘方法則、同底數冪的除法法則和算術平方根的定義計算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點睛:本題考查的是完全平方公式、積的乘方、同底數冪的除法以及算術平方根的計算,掌握完全平方公式、積的乘方法則、同底數冪的除法法則和算術平方根的定義是解題的關鍵.4、B【解析】
解:∵二次函數y=ax3+bx+c(a≠3)過點(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵拋物線的對稱軸在y軸右側,∴,x>3.∴a與b異號.∴ab<3,正確.②∵拋物線與x軸有兩個不同的交點,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正確.④∵拋物線開口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正確.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正確.⑤拋物線y=ax3+bx+c與x軸的一個交點為(﹣3,3),設另一個交點為(x3,3),則x3>3,由圖可知,當﹣3<x<x3時,y>3;當x>x3時,y<3.∴當x>﹣3時,y>3的結論錯誤.綜上所述,正確的結論有①②③④.故選B.5、D【解析】
由EF⊥BD,∠1=60°,結合三角形內角和為180°即可求出∠D的度數,再由“兩直線平行,同位角相等”即可得出結論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=30°.
∵AB∥CD,
∴∠2=∠D=30°.
故選D.【點睛】本題考查平行線的性質以及三角形內角和為180°,解題關鍵是根據平行線的性質,找出相等、互余或互補的角.6、B【解析】
依據平方根的定義求解即可.【詳解】∵(±1)1=4,∴4的平方根是±1.故選B.【點睛】本題主要考查的是平方根的定義,掌握平方根的定義是解題的關鍵.7、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點睛】本題考查解直角三角形的應用﹣仰角俯角問題,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.8、D【解析】
設第n個圖形有a個O(n為正整數),觀察圖形,根據各圖形中O的個數的變化可找出"a=1+3n(n為正整數)",再代入a=2019即可得出結論【詳解】設第n個圖形有an個〇(n為正整數),觀察圖形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴an=1+3n(n為正整數),∴a2019=1+3×2019=1.故選:D.【點睛】此題考查規律型:圖形的變化,解題關鍵在于找到規律9、C【解析】
分式分母不為0,所以,解得.故選:C.10、C【解析】試題分析:把方程的解代入方程,可以求出字母系數a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點】一元二次方程的解;一元二次方程的定義.11、C【解析】
先利用待定系數法求函數解析式,然后將y=35代入,從而求解.【詳解】解:設反比例函數關系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時間是:20-7=13,故選C.【點睛】本題考查反比例函數的應用,利用數形結合思想解題是關鍵.12、D【解析】分析:根據題目中的函數解析式可以判斷各個選項中的結論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當x=0時,y=-1,故選項A錯誤,該函數的對稱軸是直線x=-1,故選項B錯誤,當x<-1時,y隨x的增大而減小,故選項C錯誤,當x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數的性質、二次函數的最值,解答本題的關鍵是明確題意,利用二次函數的性質解答.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
根據題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數目以及能搭成一個三角形的情況數目,根據概率的計算方法,計算可得答案.【詳解】根據題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數與總情況數之比.14、1【解析】
根據平行四邊形定義得:DC∥AB,由兩角對應相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的長.【詳解】∵四邊形ABCD是平行四邊形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q為對角線AC的三等分點,∴,,設CN=x,AM=1x,∴,解得,x=1,∴CN=1,故答案為1.【點睛】本題考查了平行四邊形的性質和相似三角形的判定和性質,熟練掌握兩角對應相等,兩三角形相似的判定方法是關鍵.15、【解析】
分析:過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定與性質得出OA=BA,∠OAB=90°,證出∠AOM=∠BAN,由AAS證明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)?(k﹣1)=k,解方程即可.詳解:如圖所示,過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵雙曲線y=(x>0)經過點B,∴(1+k)?(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(負值已舍去),故答案為.點睛:本題考查了反比例函數圖象上點的坐標特征,坐標與圖形的性質,全等三角形的判定與性質,等腰三角形的判定與性質等知識.解決問題的關鍵是作輔助線構造全等三角形.【詳解】請在此輸入詳解!16、4π【解析】根據扇形的面積公式可得:扇形AOB的面積為,故答案為4π.17、且【解析】分式方程去分母得:2(2x-a)=x-2,去括號移項合并得:3x=2a-2,解得:,∵分式方程的解為非負數,∴且,解得:a≥1且a≠4.18、15【解析】如圖,等腰△ABC的內切圓⊙O是能從這塊鋼板上截得的最大圓,則由題意可知:AD和BF是△ABC的角平分線,AB=AC=50cm,BC=60cm,∴∠ADB=90°,BD=CD=30cm,∴AD=(cm),連接圓心O和切點E,則∠BEO=90°,又∵OD=OE,OB=OB,∴△BEO≌△BDO,∴BE=BD=30cm,∴AE=AB-BE=50-30=20cm,設OD=OE=x,則AO=40-x,在Rt△AOE中,由勾股定理可得:,解得:(cm).即能截得的最大圓的半徑為15cm.故答案為:15.點睛:(1)三角形中能夠裁剪出的最大的圓是這個三角形的內切圓;(2)若三角形的三邊長分別為a、b、c,面積為S,內切圓的半徑為r,則.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)A種文具進貨40只,B種文具進貨60只;(2)一共有三種購貨方案,購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【解析】
(1)設可以購進A種型號的文具x只,則可以購進B種型號的文具只,根據總價=單價×數量結合A、B兩種文具的進價及總價,即可得出關于x的一元一次方程,解之即可得出結論;(2)根據題意列不等式,解之即可得出x的取值范圍,再根據一次函數的性質,即可解決最值問題.【詳解】(1)設A種文具進貨x只,B種文具進貨只,由題意得:,解得:x=40,,答:A種文具進貨40只,B種文具進貨60只;(2)設購進A型文具a只,則有,且;解得:,∵a為整數,∴a=48、49、50,一共有三種購貨方案;利潤,∵,w隨a增大而減小,當a=48時W最大,即購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【點睛】本題主要考查了一次函數的實際問題,熟練掌握一次函數表達式的確定以及自變量取值范圍的確定,最值的求解方法是解決本題的關鍵.20、1.4米.【解析】
過點B作BE⊥AD于點E,過點C作CF⊥AD于點F,延長FC到點M,使得BE=CM,則EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的長度,進而可得出EF的長度,再在Rt△MEF中利用勾股定理即可求出EM的長,此題得解.【詳解】過點B作BE⊥AD于點E,過點C作CF⊥AD于點F,延長FC到點M,使得BE=CM,如圖所示,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB?sin∠A≈0.6,AE=AB?cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD?sin∠D≈0.7,DF=CD?cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四邊形BEMC為平行四邊形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B與C之間的距離約為1.4米.【點睛】本題考查了解直角三角形的應用、勾股定理以及平行四邊形的判定與性質,正確添加輔助線,構造直角三角形,利用勾股定理求出BC的長度是解題的關鍵.21、(1)1;(3);(3)理由見解析,店家一次應賣45只,最低售價為16.5元,此時利潤最大.【解析】試題分析:(1)設一次購買x只,由于凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降低0.10元,而最低價為每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根據(1)得到x≤1,又一次銷售x(x>10)只,因此得到自變量x的取值范圍,然后根據已知條件可以得到y與x的函數關系式;(3)首先把函數變為y=-0.1x2+9x試題解析:(1)設一次購買x只,則30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少買1只,才能以最低價購買;(3)當10<x≤1時,y=[30﹣0.1(x﹣10)﹣13]x=-0.1x綜上所述:;(3)y=-0.1x2+9x②當45<x≤1時,y隨x的增大而減小,即當賣的只數越多時,利潤變小.且當x=46時,y1=303.4,當x=1時,y3=3.∴y1>y3.即出現了賣46只賺的錢比賣1只賺的錢多的現象.當x=45時,最低售價為30﹣0.1(45﹣10)=16.5(元),此時利潤最大.故店家一次應賣45只,最低售價為16.5元,此時利潤最大.考點:二次函數的應用;二次函數的最值;最值問題;分段函數;分類討論.22、(1)y1=(120-a)x(1≤x≤125,x為正整數),y2=100x-0.5x2(1≤x≤120,x為正整數);(2)110-125a(萬元),10(萬元);(3)當40<a<80時,選擇方案一;當a=80時,選擇方案一或方案二均可;當80<a<100時,選擇方案二.【解析】
(1)根據題意直接得出y1與y2與x的函數關系式即可;(2)根據a的取值范圍可知y1隨x的增大而增大,可求出y1的最大值.又因為﹣0.5<0,可求出y2的最大值;(3)第三問要分兩種情況決定選擇方案一還是方案二.當2000﹣200a>1以及2000﹣200a<1.【詳解】解:(1)由題意得:y1=(120﹣a)x(1≤x≤125,x為正整數),y2=100x﹣0.5x2(1≤x≤120,x為正整數);(2)①∵40<a<100,∴120﹣a>0,即y1隨x的增大而增大,∴當x=125時,y1最大值=(120﹣a)×125=110﹣125a(萬元)②y2=﹣0.5(x﹣100)2+10,∵a=﹣0.5<0,∴x=100時,y2最大值=10(萬元);(3)∵由110﹣125a>10,∴a<80,∴當40<a<80時,選擇方案一;由110﹣125a=10,得a=80,∴當a=80時,選擇方案一或方案二均可;由110﹣125a<10,得a>80,∴當80<a<100時,選擇方案二.考點:二次函數的應用.23、(1)EF是⊙O的切線,理由詳見解析;(1)詳見解析;(3)⊙O的半徑的長為1.【解析】
(1)連接OE,根據等腰三角形的性質得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到結論;(1)根據含30°的直角三角形的性質證明即可;(3)由AD是⊙O的直徑,得到∠AED=90°,根據三角形的內角和得到∠EOD=60°,求得∠EGO=30°,根據三角形和扇形的面積公式即可得到結論.【詳解】解:(1)連接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切線;(1)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直徑,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年舞蹈教育專業統考試題及答案
- 2025年市場調研方法與技巧考試題及答案
- 2025年數字貨幣與金融科技專業能力測評考試卷及答案
- 2025年全球變暖與適應研究生入學考試卷及答案
- 2025年計算機科學與技術考試真題及答案
- 小學描寫誠信的作文12篇
- 鄉村夜景400字六年級作文(9篇)
- 五年級數學空間幾何與測量教案
- 個人年度收入及稅收繳納情況證明書(6篇)
- 莫高窟文化的魅力傳承:初三語文專項課題教學教案
- ISO內審檢查表(完整版)
- (高清版)TDT 1068-2022 國土空間生態保護修復工程實施方案編制規程
- 項目質量情況通報和匯報機制
- 房屋貸款確認書
- 銷售管理實際運用PDCA循環課件
- 跟單員工作總結匯報
- 變電站施工管理制度
- WS-T 10010-2023 衛生監督快速檢測通用要求(代替WS-T 458-2014)
- 鐵路行李包裹運輸-行包托運與承運業務辦理
- 《國有企業采購操作規范》【2023修訂版】
- 砂石料供應、運輸、售后服務方案-1
評論
0/150
提交評論