遼寧政法職業(yè)學院《機器學習(雙語)》2023-2024學年第二學期期末試卷_第1頁
遼寧政法職業(yè)學院《機器學習(雙語)》2023-2024學年第二學期期末試卷_第2頁
遼寧政法職業(yè)學院《機器學習(雙語)》2023-2024學年第二學期期末試卷_第3頁
遼寧政法職業(yè)學院《機器學習(雙語)》2023-2024學年第二學期期末試卷_第4頁
遼寧政法職業(yè)學院《機器學習(雙語)》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁遼寧政法職業(yè)學院《機器學習(雙語)》

2023-2024學年第二學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在處理文本分類任務(wù)時,除了傳統(tǒng)的機器學習算法,深度學習模型也表現(xiàn)出色。假設(shè)我們要對新聞文章進行分類。以下關(guān)于文本分類模型的描述,哪一項是不正確的?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體如長短期記憶網(wǎng)絡(luò)(LSTM)和門控循環(huán)單元(GRU)能夠處理文本的序列信息B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)也可以應(yīng)用于文本分類,通過卷積操作提取文本的局部特征C.Transformer架構(gòu)在處理長文本時性能優(yōu)于RNN和CNN,但其計算復(fù)雜度較高D.深度學習模型在文本分類任務(wù)中總是比傳統(tǒng)機器學習算法(如樸素貝葉斯、支持向量機)效果好2、在進行模型評估時,除了準確率、召回率等指標,還可以使用混淆矩陣來更全面地了解模型的性能。假設(shè)我們有一個二分類模型的混淆矩陣。以下關(guān)于混淆矩陣的描述,哪一項是不準確的?()A.混淆矩陣的行表示真實類別,列表示預(yù)測類別B.真陽性(TruePositive,TP)表示實際為正例且被預(yù)測為正例的樣本數(shù)量C.假陰性(FalseNegative,F(xiàn)N)表示實際為正例但被預(yù)測為負例的樣本數(shù)量D.混淆矩陣只能用于二分類問題,不能用于多分類問題3、在進行異常檢測時,以下關(guān)于異常檢測方法的描述,哪一項是不正確的?()A.基于統(tǒng)計的方法通過計算數(shù)據(jù)的均值、方差等統(tǒng)計量來判斷異常值B.基于距離的方法通過計算樣本之間的距離來識別異常點C.基于密度的方法認為異常點的局部密度顯著低于正常點D.所有的異常檢測方法都能準確地檢測出所有的異常,不存在漏檢和誤檢的情況4、假設(shè)正在進行一項關(guān)于客戶購買行為預(yù)測的研究。我們擁有大量的客戶數(shù)據(jù),包括個人信息、購買歷史和瀏覽記錄等。為了從這些數(shù)據(jù)中提取有價值的特征,以下哪種方法通常被廣泛應(yīng)用?()A.主成分分析(PCA)B.線性判別分析(LDA)C.因子分析D.獨立成分分析(ICA)5、假設(shè)我們要使用機器學習算法來預(yù)測股票價格的走勢。以下哪種數(shù)據(jù)特征可能對預(yù)測結(jié)果幫助較小()A.公司的財務(wù)報表數(shù)據(jù)B.社交媒體上關(guān)于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟指標6、某研究團隊正在開發(fā)一個用于疾病預(yù)測的機器學習模型,需要考慮模型的魯棒性和穩(wěn)定性。以下哪種方法可以用于評估模型在不同數(shù)據(jù)集和條件下的性能?()A.交叉驗證B.留一法C.自助法D.以上方法都可以7、假設(shè)正在進行一個情感分析任務(wù),使用深度學習模型。以下哪種神經(jīng)網(wǎng)絡(luò)架構(gòu)常用于情感分析?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.長短時記憶網(wǎng)絡(luò)(LSTM)D.以上都可以8、在一個推薦系統(tǒng)中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機推薦,增加推薦結(jié)果的不確定性,但可能降低相關(guān)性B.基于內(nèi)容的多樣性優(yōu)化,選擇不同類型的物品進行推薦,但可能忽略用戶偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結(jié)合使用,并根據(jù)用戶反饋動態(tài)調(diào)整9、在機器學習中,數(shù)據(jù)預(yù)處理是非常重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)預(yù)處理的說法中,錯誤的是:數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)歸一化、數(shù)據(jù)標準化等步驟。目的是提高數(shù)據(jù)的質(zhì)量和可用性。那么,下列關(guān)于數(shù)據(jù)預(yù)處理的說法錯誤的是()A.數(shù)據(jù)清洗可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)歸一化將數(shù)據(jù)映射到[0,1]區(qū)間,便于不同特征之間的比較C.數(shù)據(jù)標準化將數(shù)據(jù)的均值和標準差調(diào)整為特定的值D.數(shù)據(jù)預(yù)處理對模型的性能影響不大,可以忽略10、假設(shè)要開發(fā)一個疾病診斷的輔助系統(tǒng),能夠根據(jù)患者的醫(yī)學影像(如X光、CT等)和臨床數(shù)據(jù)做出診斷建議。以下哪種模型融合策略可能是最有效的?()A.簡單平均多個模型的預(yù)測結(jié)果,計算簡單,但可能無法充分利用各個模型的優(yōu)勢B.基于加權(quán)平均的融合,根據(jù)模型的性能或重要性分配權(quán)重,但權(quán)重的確定可能具有主觀性C.采用堆疊(Stacking)方法,將多個模型的輸出作為新的特征輸入到一個元模型中進行融合,但可能存在過擬合風險D.基于注意力機制的融合,動態(tài)地根據(jù)輸入數(shù)據(jù)為不同模型分配權(quán)重,能夠更好地適應(yīng)不同情況,但實現(xiàn)較復(fù)雜11、在一個強化學習問題中,智能體需要在環(huán)境中通過不斷嘗試和學習來優(yōu)化其策略。如果環(huán)境具有高維度和連續(xù)的動作空間,以下哪種算法通常被用于解決這類問題?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法12、在一個無監(jiān)督學習問題中,需要發(fā)現(xiàn)數(shù)據(jù)中的潛在結(jié)構(gòu)。如果數(shù)據(jù)具有層次結(jié)構(gòu),以下哪種方法可能比較適合?()A.自組織映射(SOM)B.生成對抗網(wǎng)絡(luò)(GAN)C.層次聚類D.以上方法都可以13、在一個監(jiān)督學習問題中,我們需要評估模型在新數(shù)據(jù)上的泛化能力。如果數(shù)據(jù)集較小且存在類別不平衡的情況,以下哪種評估指標需要特別謹慎地使用?()A.準確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)14、特征工程是機器學習中的重要環(huán)節(jié)。以下關(guān)于特征工程的說法中,錯誤的是:特征工程包括特征提取、特征選擇和特征轉(zhuǎn)換等步驟。目的是從原始數(shù)據(jù)中提取出有效的特征,提高模型的性能。那么,下列關(guān)于特征工程的說法錯誤的是()A.特征提取是從原始數(shù)據(jù)中自動學習特征表示的過程B.特征選擇是從眾多特征中選擇出對模型性能有重要影響的特征C.特征轉(zhuǎn)換是將原始特征進行變換,以提高模型的性能D.特征工程只在傳統(tǒng)的機器學習算法中需要,深度學習算法不需要進行特征工程15、某研究需要對生物信息數(shù)據(jù)進行分析,例如基因序列數(shù)據(jù)。以下哪種機器學習方法在處理生物信息學問題中經(jīng)常被應(yīng)用?()A.隱馬爾可夫模型B.條件隨機場C.深度學習模型D.以上方法都常用二、簡答題(本大題共4個小題,共20分)1、(本題5分)機器學習中梯度提升樹(GBDT)的特點是什么?2、(本題5分)機器學習中門控循環(huán)單元(GRU)有什么特點?3、(本題5分)什么是在線學習?與離線學習有何不同?4、(本題5分)機器學習在植物學中的研究領(lǐng)域有哪些?三、論述題(本大題共5個小題,共25分)1、(本題5分)分析機器學習在通信中的信號調(diào)制識別中的應(yīng)用,討論其對通信系統(tǒng)性能的提升。2、(本題5分)論述機器學習在體育領(lǐng)域的應(yīng)用,如運動員表現(xiàn)分析、比賽結(jié)果預(yù)測等,討論其對體育產(chǎn)業(yè)的價值。3、(本題5分)論述機器學習在制藥領(lǐng)域的應(yīng)用前景。討論藥物研發(fā)、藥物副作用預(yù)測、藥物療效評估等方面的機器學習方法和挑戰(zhàn)。4、(本題5分)闡述機器學習中的模型選擇與調(diào)參。解釋模型選擇和調(diào)參的重要性,介紹常見的方法。分析如何選擇合適的模型和調(diào)整參數(shù)以提高模型性能。5、(本題5分)論述時間序列預(yù)測中,傳統(tǒng)機器學習算法(如ARIMA、SARIMA)和深度學習算法(如LSTM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論