2024屆山東省濱州沾化區六校聯考中考數學模擬試卷含解析_第1頁
2024屆山東省濱州沾化區六校聯考中考數學模擬試卷含解析_第2頁
2024屆山東省濱州沾化區六校聯考中考數學模擬試卷含解析_第3頁
2024屆山東省濱州沾化區六校聯考中考數學模擬試卷含解析_第4頁
2024屆山東省濱州沾化區六校聯考中考數學模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省濱州沾化區六校聯考中考數學模擬精編試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知二次函數y=x2﹣4x+m的圖象與x軸交于A、B兩點,且點A的坐標為(1,0),則線段AB的長為()A.1 B.2 C.3 D.42.如圖,從正方形紙片的頂點沿虛線剪開,則∠1的度數可能是()A.44 B.45 C.46 D.473.函數y=ax2+1與(a≠0)在同一平面直角坐標系中的圖象可能是()A. B. C. D.4.如圖,4張如圖1的長為a,寬為b(a>b)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足()A.a= B.a=2b C.a=b D.a=3b5.下列事件中,必然事件是()A.拋擲一枚硬幣,正面朝上B.打開電視,正在播放廣告C.體育課上,小剛跑完1000米所用時間為1分鐘D.袋中只有4個球,且都是紅球,任意摸出一球是紅球6.如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°7.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.8.如圖,已知是的角平分線,是的垂直平分線,,,則的長為()A.6 B.5 C.4 D.9.如圖,已知點A(1,0),B(0,2),以AB為邊在第一象限內作正方形ABCD,直線CD與y軸交于點G,再以DG為邊在第一象限內作正方形DEFG,若反比例函數的圖像經過點E,則k的值是()(A)33(B)34(C)35(D)3610.實數﹣5.22的絕對值是()A.5.22 B.﹣5.22 C.±5.22 D.二、填空題(共7小題,每小題3分,滿分21分)11.某數學興趣小組在研究下列運算流程圖時發現,取某個實數范圍內的x作為輸入值,則永遠不會有輸出值,這個數學興趣小組所發現的實數x的取值范圍是_____.12.若2x+y=2,則4x+1+2y的值是_______.13.我們知道,四邊形具有不穩定性.如圖,在平面直角坐標系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D'處,則點C的對應點C'的坐標為_____.14.如圖,若正五邊形和正六邊形有一邊重合,則∠BAC=_____.15.的倒數是_____________.16.如圖所示,三角形ABC的面積為1cm1.AP垂直∠B的平分線BP于P.則與三角形PBC的面積相等的長方形是()A.B.C.D.17.分解因式:x3y﹣2x2y+xy=______.三、解答題(共7小題,滿分69分)18.(10分)龐亮和李強相約周六去登山,龐亮從北坡山腳C處出發,以24米/分鐘的速度攀登,同時,李強從南坡山腳B處出發.如圖,已知小山北坡的坡度,山坡長為240米,南坡的坡角是45°.問李強以什么速度攀登才能和龐亮同時到達山頂A?(將山路AB、AC看成線段,結果保留根號)19.(5分)如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求BD的長.20.(8分)已知拋物線y=a(x-1)2+3(a≠0)與y軸交于點A(0,2),頂點為B,且對稱軸l1與x軸交于點M(1)求a的值,并寫出點B的坐標;(2)將此拋物線向右平移所得新的拋物線與原拋物線交于點C,且新拋物線的對稱軸l2與x軸交于點N,過點C做DE∥x軸,分別交l1、l2于點D、E,若四邊形MDEN是正方形,求平移后拋物線的解析式.21.(10分)已知△OAB在平面直角坐標系中的位置如圖所示.請解答以下問題:按要求作圖:先將△ABO繞原點O逆時針旋轉90°得△OA1B1,再以原點O為位似中心,將△OA1B1在原點異側按位似比2:1進行放大得到△OA2B2;直接寫出點A1的坐標,點A2的坐標.22.(10分)如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.(1)求雙曲線的解析式;(2)求點C的坐標,并直接寫出y1<y2時x的取值范圍.23.(12分)先化簡,再求值:(),其中=24.(14分)為了解某市市民上班時常用交通工具的狀況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如圖所示的尚不完整的統計圖:根據以上統計圖,解答下列問題:本次接受調查的市民共有人;扇形統計圖中,扇形B的圓心角度數是;請補全條形統計圖;若該市“上班族”約有15萬人,請估計乘公交車上班的人數.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

先將點A(1,0)代入y=x2﹣4x+m,求出m的值,將點A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1?x2=3,即可解答【詳解】將點A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,與x軸交于兩點,設A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有兩個不等的實數根,∴x1+x2=4,x1?x2=3,∴AB=|x1﹣x2|==2;故選B.【點睛】此題考查拋物線與坐標軸的交點,解題關鍵在于將已知點代入.2、A【解析】

連接正方形的對角線,然后依據正方形的性質進行判斷即可.【詳解】解:如圖所示:∵四邊形為正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故選:A.【點睛】本題主要考查的是正方形的性質,熟練掌握正方形的性質是解題的關鍵.3、B【解析】試題分析:分a>0和a<0兩種情況討論:當a>0時,y=ax2+1開口向上,頂點坐標為(0,1);位于第一、三象限,沒有選項圖象符合;當a<0時,y=ax2+1開口向下,頂點坐標為(0,1);位于第二、四象限,B選項圖象符合.故選B.考點:1.二次函數和反比例函數的圖象和性質;2.分類思想的應用.4、B【解析】

從圖形可知空白部分的面積為S2是中間邊長為(a﹣b)的正方形面積與上下兩個直角邊為(a+b)和b的直角三角形的面積,再與左右兩個直角邊為a和b的直角三角形面積的總和,陰影部分的面積為S1是大正方形面積與空白部分面積之差,再由S2=2S1,便可得解.【詳解】由圖形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故選B.【點睛】本題主要考查了求陰影部分面積和因式分解,關鍵是正確列出陰影部分與空白部分的面積和正確進行因式分解.5、D【解析】試題解析:A.是可能發生也可能不發生的事件,屬于不確定事件,不符合題意;B.是可能發生也可能不發生的事件,屬于不確定事件,不符合題意;C.是可能發生也可能不發生的事件,屬于不確定事件,不符合題意;D.袋中只有4個球,且都是紅球,任意摸出一球是紅球,是必然事件,符合題意.故選D.點睛:事件分為確定事件和不確定事件.必然事件和不可能事件叫做確定事件.6、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.7、D【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;C、不是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.8、D【解析】

根據ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【點睛】本題考查了線段垂直平分線的性質,三角形內角和定理,含30度角的直角三角形的性質,余弦等,結合圖形熟練應用相關的性質及定理是解題的關鍵.9、D【解析】試題分析:過點E作EM⊥OA,垂足為M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;故選D.考點:反比例函數綜合題.10、A【解析】

根據絕對值的性質進行解答即可.【詳解】實數﹣5.1的絕對值是5.1.故選A.【點睛】本題考查的是實數的性質,熟知絕對值的性質是解答此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

通過找到臨界值解決問題.【詳解】由題意知,令3x-1=x,x=,此時無輸出值當x>時,數值越來越大,會有輸出值;當x<時,數值越來越小,不可能大于10,永遠不會有輸出值故x≤,故答案為x≤.【點睛】本題考查不等式的性質,解題的關鍵是理解題意,學會找到臨界值解決問題.12、1【解析】分析:將原式化簡成2(2x+y)+1,然后利用整體代入的思想進行求解得出答案.詳解:原式=2(2x+y)+1=2×2+1=1.點睛:本題主要考查的是整體思想求解,屬于基礎題型.找到整體是解題的關鍵.13、(2,)【解析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).14、132°【解析】解:∵正五邊形的內角=180°-360°÷5=108°,正六邊形的內角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案為132°.15、【解析】先把帶分數化成假分數可得:,然后根據倒數的概念可得:的倒數是,故答案為:.16、B【解析】

過P點作PE⊥BP,垂足為P,交BC于E,根據AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可證明三角形PBC的面積.【詳解】解:過P點作PE⊥BP,垂足為P,交BC于E,∵AP垂直∠B的平分線BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面積=三角形ABC的面積=cm1,選項中只有B的長方形面積為cm1,故選B.17、xy(x﹣1)1【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】解:原式=xy(x1-1x+1)=xy(x-1)1.故答案為:xy(x-1)1【點睛】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.三、解答題(共7小題,滿分69分)18、李強以12米/分鐘的速度攀登才能和龐亮同時到達山頂A【解析】過點A作AD⊥BC于點D,在Rt△ADC中,由得tanC=∴∠C=30°∴AD=AC=×240=120(米)在Rt△ABD中,∠B=45°∴AB=AD=120(米)120÷(240÷24)=120÷10=12(米/分鐘)答:李強以12米/分鐘的速度攀登才能和龐亮同時到達山頂A19、(1)證明見解析;(2)【解析】試題分析:(1)連接OB,由SSS證明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;(2)連接BE,證明△PAC∽△AOC,證出OC是△ABE的中位線,由三角形中位線定理得出BE=2OC,由△DBE∽△DPO可求出.試題解析:(1)連結OB,則OA=OB.如圖1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分線,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB為⊙O的切線,B為切點,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切線;(2)連結BE.如圖2,∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,∴AC=1,則BC=1.在Rt△APO中,∵AC⊥OP,∴△PAC∽△AOC,∴AC2=OC?PC,解得PC=9,∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,∵AC=BC,OA=OE,即OC為△ABE的中位線.∴OC=BE,OC∥BE,∴BE=2OC=3.∵BE∥OP,∴△DBE∽△DPO,∴,即,解得BD=.20、(1)a=-1,B坐標為(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】

(1)利用待定系數法即可解決問題;(2)如圖,設拋物線向右平移后的解析式為y=-(x-m)2+3,再用m表示點C的坐標,需分兩種情況討論,用待定系數法即可解決問題.【詳解】(1)把點A(0,2)代入拋物線的解析式可得,2=a+3,∴a=-1,∴拋物線的解析式為y=-(x-1)2+3,頂點為(1,3)(2)如圖,設拋物線向右平移后的解析式為y=-(x-m)2+3,由解得x=∴點C的橫坐標為∵MN=m-1,四邊形MDEN是正方形,∴C(,m-1)把C點代入y=-(x-1)2+3,得m-1=-+3,解得m=3或-5(舍去)∴平移后的解析式為y=-(x-3)2+3,當點C在x軸的下方時,C(,1-m)把C點代入y=-(x-1)2+3,得1-m=-+3,解得m=7或-1(舍去)∴平移后的解析式為y=-(x-7)2+3綜上:平移后的解析式為y=-(x-3)2+3,或y=-(x-7)2+3.【點睛】此題主要考查二次函數的綜合問題,解題的關鍵是熟知正方形的性質與函數結合進行求解.21、(1)見解析;(2)點A1的坐標為:(﹣1,3),點A2的坐標為:(2,﹣6).【解析】

(1)直接利用位似圖形的性質得出對應點位置進而得出答案;(2)利用(1)中所畫圖形進而得出答案.【詳解】(1)如圖所示:△OA1B1,△OA2B2,即為所求;(2)點A1的坐標為:(﹣1,3),點A2的坐標為:(2,﹣6).【點睛】此題主要考查了位似變換以及旋轉變換,正確得出對應點位置是解題關鍵.22、(1);(1)C(﹣1,﹣4),x的取值范圍是x<﹣1或0<x<1.【解析】【分析】(1)作高線AC,根據等腰直角三角形的性質和點A的坐標的特點得:x=1x﹣1,可得A的坐標,從而得雙曲線的解析式;(1)聯立一次函數和反比例函數解析式得方程組,解方程組可得點C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論