專題05 半角模型(解析版)_第1頁
專題05 半角模型(解析版)_第2頁
專題05 半角模型(解析版)_第3頁
專題05 半角模型(解析版)_第4頁
專題05 半角模型(解析版)_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題05半角模型基本模型:例題精講例1.(120°與60°)問題情境在等邊△ABC的兩邊AB,AC上分別有兩點(diǎn)M,N,點(diǎn)D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.特例探究如圖1,當(dāng)DM=DN時(shí),(1)∠MDB=度;(2)MN與BM,NC之間的數(shù)量關(guān)系為;歸納證明(3)如圖2,當(dāng)DM≠DN時(shí),在NC的延長(zhǎng)線上取點(diǎn)E,使CE=BM,連接DE,猜想MN與BM,NC之間的數(shù)量關(guān)系,并加以證明.拓展應(yīng)用(4)△AMN的周長(zhǎng)與△ABC的周長(zhǎng)的比為.【答案】(1)30;(2)MN=BM+NC;(3)MN=BM+NC,證明見解析;(4)【詳解】特例探究:解:(1)∵DM=DN,∠MDN=60°,∴△MDN是等邊三角形,∴MN=DM=DN,∵∠BDC=120°,BD=DC,∴∠DBC=∠DCB=30°,∵△ABC是等邊三角形,∴∠ABC=∠ACB=60°,∴∠DBM=∠DCN=90°,∵BD=CD,DM=DN,∴Rt△DBM≌Rt△DCN(HL),∴∠MDB=∠NDC=30°,故答案為:30;(2)由(1)得:DM=2BM,DM=MN,Rt△DBM≌Rt△DCN(HL),∴BM=CN,∴DM=MN=2BM=BM+NC,即MN=BM+NC;歸納證明(3)解:猜想:MN=BM+NC,證明如下:∵△ABC是等邊三角形,∴∠ABC=∠ACB=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°.∴∠MBD=∠ECD=90°,又∵BD=CD,BM=CE,∴△DBM≌△DCE(SAS),∴DM=DE,∠MDB=∠EDC,∵∠MDN=60°,∠BDC=120°,∴∠MDB+∠NDC=60°,∴∠EDN=∠NDC+∠EDC=∠MDB+∠NDC=60°,∴∠EDN=∠MDN,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=EN=EC+NC=BM+NC;拓展應(yīng)用(4)解:由(1)(2)得:MN=BM+NC,∴△AMN的周長(zhǎng)=AM+MN+AN=AM+BM+NC+AN=AB+AC=2AB,∵△ABC是等邊三角形,∴AB=BC=AC,∴△ABC的周長(zhǎng)=3AB,∴△AMN的周長(zhǎng)與△ABC的周長(zhǎng)的比為=,故答案為:.例2.(60°與30°)問題情境:已知,在等邊△ABC中,∠BAC與∠ACB的角平分線交于點(diǎn)O,點(diǎn)M、N分別在直線AC,AB上,且∠MON=60°,猜想CM、MN、AN三者之間的數(shù)量關(guān)系.方法感悟:小芳的思考過程是在CM上取一點(diǎn),構(gòu)造全等三角形,從而解決問題;小麗的思考過程是在AB取一點(diǎn),構(gòu)造全等三角形,從而解決問題;問題解決:(1)如圖1,M、N分別在邊AC,AB上時(shí),探索CM、MN、AN三者之間的數(shù)量關(guān)系,并證明;(2)如圖2,M在邊AC上,點(diǎn)N在BA的延長(zhǎng)線上時(shí),請(qǐng)你在圖2中補(bǔ)全圖形,標(biāo)出相應(yīng)字母,探索CM、MN、AN三者之間的數(shù)量關(guān)系,并證明.【答案】(1)CM=AN+MN,詳見解析;(2)CM=MN﹣AN,詳見解析【詳解】解:(1)CM=AN+MN,理由如下:在AC上截取CD=AN,連接OD,∵△ABC為等邊三角形,∠BAC與∠ACB的角平分線交于點(diǎn)O,∴∠OAC=∠OCA=30°,∴OA=OC,在△CDO和△ANO中,,∴△CDO≌△ANO(SAS)∴OD=ON,∠COD=∠AON,∵∠MON=60°,∴∠COD+∠AOM=60°,∵∠AOC=120°,∴∠DOM=60°,在△DMO和△NMO中,,∴△DMO≌△NMO,∴DM=MN,∴CM=CD+DM=AN+MN;(2)補(bǔ)全圖形如圖2所示:CM=MN﹣AN,理由如下:在AC延長(zhǎng)線上截取CD=AN,連接OD,在△CDO和△ANO中,,∴△CDO≌△ANO(SAS)∴OD=ON,∠COD=∠AON,∴∠DOM=∠NOM,在△DMO和△NMO中,,∴△DMO≌△NMO(SAS),∴MN=DM,∴CM=DM﹣CD=MN﹣AN.例3.(90°與45°)如圖①,四邊形ABCD為正方形,點(diǎn)E,F(xiàn)分別在AB與BC上,且∠EDF=45°,易證:AE+CF=EF(不用證明).(1)如圖②,在四邊形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,點(diǎn)E,F(xiàn)分別在AB與BC上,且∠EDF=60°.猜想AE,CF與EF之間的數(shù)量關(guān)系,并證明你的猜想;(2)如圖③,在四邊形ABCD中,∠ADC=2α,DA=DC,∠DAB與∠BCD互補(bǔ),點(diǎn)E,F(xiàn)分別在AB與BC上,且∠EDF=α,請(qǐng)直接寫出AE,CF與EF之間的數(shù)量關(guān)系,不用證明.【答案】(1)AE+CF=EF,證明見解析;(2),理由見解析.【詳解】(1)圖2猜想:AE+CF=EF,證明:在BC的延長(zhǎng)線上截取CA'=AE,連接A'D,∵∠DAB=∠BCD=90°,∴∠DAB=∠DCA'=90°,又∵AD=CD,AE=A'C,∴△DAE≌△DCA'(SAS),∴ED=A'D,∠ADE=∠A'DC,∵∠ADC=120°,∴∠EDA'=120°,∵∠EDF=60°,∴∠EDF=∠A'DF=60°,又DF=DF,∴△EDF≌△A'DF(SAS),則EF=A'F=FC+CA'=FC+AE;(2)如圖3,AE+CF=EF,證明:在BC的延長(zhǎng)線上截取CA'=AE,連接A'D,∵∠DAB與∠BCD互補(bǔ),∠BCD+∠DCA'=180°∴∠DAB=∠DCA',又∵AD=CD,AE=A'C,∴△DAE≌△DCA'(SAS),∴ED=A'D,∠ADE=∠A'DC,∵∠ADC=2α,∴∠EDA'=2α,∵∠EDF=α,∴∠EDF=∠A'DF=α又DF=DF,∴△EDF≌△A'DF(SAS),則EF=A'F=FC+CA'=FC+AE.【變式訓(xùn)練1】已知四邊形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN繞B點(diǎn)旋轉(zhuǎn),它的兩邊分別交AD,DC(或它們的延長(zhǎng)線)于E、F.(1)當(dāng)∠MBN繞B點(diǎn)旋轉(zhuǎn)到AE=CF時(shí)(如圖1),試猜想AE,CF,EF之間存在怎樣的數(shù)量關(guān)系?請(qǐng)將三條線段分別填入后面橫線中:+=.(不需證明)(2)當(dāng)∠MBN繞B點(diǎn)旋轉(zhuǎn)到AE≠CF(如圖2)時(shí),上述(1)中結(jié)論是否成立?請(qǐng)說明理由.(3)當(dāng)∠MBN繞B點(diǎn)旋轉(zhuǎn)到AE≠CF(如圖3)時(shí),上述(1)中結(jié)論是否成立?若不成立,線段AE,CF,EF又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想,不需證明.【答案】(1)AE;CF;EF;(2)成立,見解析;(3)不成立,新的關(guān)系為AE=EF+CF.【詳解】解:(1)如圖1,AE+CF=EF,理由如下:∵AB⊥AD,BC⊥CD,∴∠A=∠C=90°,∵AB=BC,AE=CF,∴△ABE≌△CBF(SAS),∴∠ABE=∠CBF,BE=BF,∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴,∵∠MBN=60°,BE=BF,∴△BEF是等邊三角形,∴,故答案為:AE+CF=EF;(2)如圖2,(1)中結(jié)論成立;理由如下:延長(zhǎng)FC到H,使CH=AE,連接BH,∵AB⊥AD,BC⊥CD,∴∠A=∠BCH=90°,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°-60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=∠MBN=60°,∴∠HBF=∠EBF,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF;(3)如圖3,(1)中的結(jié)論不成立,關(guān)系為AE=EF+CF,理由如下:在AE上截取AQ=CF,連接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,∵AB=BC,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°-60°=60°=∠MBN,∴∠FBE=∠QBE,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CF,∴AE=EF+CF.【變式訓(xùn)練2】如圖,梯形ABCD中,AD∥BC,AB=BC=DC,點(diǎn)E、F分別在AD、AB上,且.(1)求證:;(2)連結(jié)AC,若,求的度數(shù).【答案】(1)見解析;(2)20°【詳解】(1)旋轉(zhuǎn)△BCF使BC與CD重合,∵AD∥BC,AB=DC,即梯形ABCD為等腰梯形,∴∠A=∠ADC,∠A+∠ABC=180°,∴∠ADC+∠ABC=180°,由旋轉(zhuǎn)可知:∠ABC=∠CDF′,∴∠ADC+∠CDF′=180°,即∠ADF′為平角,∴A,D,F(xiàn)′共線,∵∴∠BCF+∠ECD=∠ECF=∠BCD,∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF,∴△FCE≌△F′CE,∴EF′=EF=DF′+ED,∴BF=EF-ED;(2)∵AB=BC,∠B=80°,∴∠ACB=50°,由(1)得∠FEC=∠DEC=70°,又∵AD//BC,∴∠ECB=70°,而∠B=∠BCD=80°,∴∠DCE=10°,∴∠BCF=30°,∴∠ACF=∠BCA-∠BCF=20°.【變式訓(xùn)練3】問題背景:“半角模型”問題.如圖1,在四邊形中,,,,點(diǎn)E,F(xiàn)分別是上的點(diǎn),且,連接,探究線段之間的數(shù)量關(guān)系.(1)探究發(fā)現(xiàn):小明同學(xué)的方法是延長(zhǎng)到點(diǎn)G.使.連結(jié),先證明,再證明,從而得出結(jié)論:_____________;(2)拓展延伸:如圖2,在四邊形中,,,E、F分別是邊上的點(diǎn),且,請(qǐng)問(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)寫出證明過程,若不成立,請(qǐng)說明理由.(3)嘗試應(yīng)用:如圖3,在四邊形中,,,E、F分別是邊延長(zhǎng)線上的點(diǎn),且,請(qǐng)?zhí)骄烤€段具有怎樣的數(shù)量關(guān)系,并證明.【答案】(1)(2)成立,理由見解析(3),證明見解析【詳解】(1)解:.延長(zhǎng)到點(diǎn)G.使.連接,∵,∴.∴.∴.∴.又∵,∴.∴.∵.∴.故答案為:;(2)解:(1)中的結(jié)論仍然成立.證明:如圖②中,延長(zhǎng)至M,使,連接.∵,∴,在與中,,∴.∴.∵,∴.∴,即.在與中,,∴.∴,即,∴;(3)解:結(jié)論:.證明:如圖③中,在上截取,使,連接.∵,∴.在與中,,∴.∴.∴.∴.∵,∴,

∴,∵,∴.【變式訓(xùn)練4】綜合與實(shí)踐(1)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,則MN,AM,CN的數(shù)量關(guān)系為.(2)如圖2,在四邊形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,點(diǎn)M、N分別在AD、CD上,若∠MBN=∠ABC,試探索線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出猜想,并給予證明.(3)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=∠ABC,試探究線段MN、AM、CN的數(shù)量關(guān)系為.【答案】(1)MN=AM+CN;(2)MN=AM+CN,理由見解析;(3)MN=CN-AM,理由見解析【詳解】解:(1)如圖,把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC

,∴∠BCM'+∠BCD=180°,∴點(diǎn)M'、C、N三點(diǎn)共線,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M(jìn)'N=M'C+CN,∴MN=M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如圖,把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴點(diǎn)M'、C、N三點(diǎn)共線,∵∠MBN=∠ABC,∴∠ABM+∠CBN=∠ABC=∠MBN,∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M(jìn)'N=M'C+CN,∴MN=M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如圖,在NC上截取CM'=AM,連接BM',∵在四邊形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠C,∵AB=BC,∴△ABM≌△CBM',∴AM=CM',BM=BM',∠ABM=∠CBM',∴∠MAM'=∠ABC,∵∠MBN=∠ABC,∴∠MBN=∠MAM'=∠M'BN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M(jìn)'N=CN-CM',

∴MN=CN-AM.故答案是:MN=CN-AM.課后訓(xùn)練1.如圖,在四邊形中,,,分別是,上的點(diǎn),連接,,.(1)如圖①,,,.求證:;

(2)如圖②,,當(dāng)周長(zhǎng)最小時(shí),求的度數(shù);(3)如圖③,若四邊形為正方形,點(diǎn)、分別在邊、上,且,若,,請(qǐng)求出線段的長(zhǎng)度.【答案】(1)見解析;(2);(3).【詳解】(1)證明:如解圖①,延長(zhǎng)到點(diǎn),使,連接,在和中,.,,,,.,在和中,.,;(2)解:如解圖,分別作點(diǎn)A關(guān)于和的對(duì)稱點(diǎn),,連接,交于點(diǎn),交于點(diǎn).由對(duì)稱的性質(zhì)可得,,此時(shí)的周長(zhǎng)為.當(dāng)點(diǎn)、、、在同一條直線上時(shí),即為周長(zhǎng)的最小值.,.,,;(3)解:如解圖,旋轉(zhuǎn)至的位置,,,.在和中,...2.(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點(diǎn).且∠EAF=50°.探究圖中線段EF,BE,F(xiàn)D之間的數(shù)量關(guān)系.小明同學(xué)探究的方法是:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論是(直接寫結(jié)論,不需證明);(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F(xiàn)分別是BC,CD上的點(diǎn),且2∠EAF=∠BAD,上述結(jié)論是否仍然成立,若成立,請(qǐng)證明,若不成立,請(qǐng)說明理由;(3)如圖3,四邊形ABCD是邊長(zhǎng)為7的正方形,∠EBF=45°,直接寫出△DEF的周長(zhǎng).【答案】(1)EF=BE+DF;(2)成立,理由詳見解析;(3)14.【詳解】證明:(1)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAD=100°,∠EAF=50°,∴∠BAE+∠FAD=∠DAG+∠FAD=50°,∴∠EAF=∠FAG=50°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=BE+DF,故答案為:EF=BE+DF;(2)結(jié)論仍然成立,理由如下:如圖2,延長(zhǎng)EB到G,使BG=DF,連接AG,∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG與△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵2∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF,∴∠GAE=∠EAF,又AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG.∴EF=BE+FD;(3)如圖,延長(zhǎng)EA到H,使AH=CF,連接BH,∵四邊形ABCD是正方形,∴AB=BC=7=AD=CD,∠BAD=∠BCD=90°,∴∠BAH=∠BCF=90°,又∵AH=CF,AB=BC,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=45°,∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,∴∠EBH=∠EBF,又∵BH=BF,BE=BE,∴△EBH≌△EBF(SAS),∴EF=EH,∴EF=EH=AE+CF,∴△DEF的周長(zhǎng)=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.3.已知:正方形中,,繞點(diǎn)順時(shí)針旋轉(zhuǎn),它的兩邊分別交(或它們的延長(zhǎng)線)于點(diǎn).當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證.(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖2),線段和之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3的位置時(shí),線段和之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.【答案】(1),證明見解析(2)【詳解】(1)BM+DN=MN成立.證明:如圖,把△ADN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABE,則可證得E、B、M三點(diǎn)共線.∴∠EAM=90°-∠NAM=90°-45°=45°,又∵∠NAM=45°,∴在△AEM與△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵M(jìn)E=BE+BM=DN+BM,∴DN+BM=MN;(2)DN-BM=MN.在線段DN上截取DQ=BM,如圖,在△ADQ與△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN-BM=MN.4.(1)如圖1,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是邊BC、CD上的點(diǎn),且∠EAF=∠BAD.求證:EF=BE+FD;(2)如圖2在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是邊BC、CD上的點(diǎn),且∠EAF=∠BAD,(1)中的結(jié)論是否仍然成立?不用證明.(3)如圖3在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且∠EAF=∠BAD,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)寫出它們之間的數(shù)量關(guān)系,并證明.【答案】(1)證明見解析;(2)(1)中的結(jié)論EF=BE+FD仍然成立;(3)結(jié)論EF=BE+FD不成立,應(yīng)當(dāng)是EF=BE-FD.【詳解】解:(1)延長(zhǎng)EB到G,使BG=DF,連接AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF.∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的結(jié)論EF=BE+FD仍然成立.理由如下:如圖2,延長(zhǎng)CB至M,使BM=DF,連接AM,∵∠ABC+∠D=180°,∠ABC+∠1=180°,∴∠1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論