




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省武漢市東湖高新區(qū)2025屆數(shù)學八下期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.等腰三角形的周長為20,設底邊長為,腰長為,則關于的函數(shù)解析式為(為自變量)()A. B. C. D.2.已知一組數(shù)據(jù)2、x、7、3、5、3、2的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是()A.2 B.2.5 C.3 D.53.如圖,四邊形ABCD為矩形,△ACE為AC為底的等腰直角三角形,連接BE交AD、AC分別于F、N,CM平分∠ACB交BN于M,下列結論:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正確的結論有()A.1個 B.2個C.3個 D.4個4.下列說法:①平方等于64的數(shù)是8;②若a,b互為相反數(shù),ab≠0,則;③若,則的值為負數(shù);④若ab≠0,則的取值在0,1,2,-2這四個數(shù)中,不可取的值是0.正確的個數(shù)為()A.0個 B.1個 C.2個 D.3個5.如圖,在中,,垂直平分于點,交于點,則為()A.30° B.25° C.20° D.15°6.函數(shù)y=xx+3的自變量取值范圍是(A.x≠0 B.x>﹣3 C.x≥﹣3且x≠0 D.x>﹣3且x≠07.如圖,矩形ABCD中,對角線AC=8cm,△AOB是等邊三角形,則AD的長為()cm.A.4 B.6 C.4 D.38.如圖,在矩形中,點的坐標為,則的長是()A. B. C. D.9.下列是最簡二次根式的是A. B. C. D.10.如圖,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=108°,則∠D=()A.144° B.110° C.100° D.108°11.P1(x1,y1),P2(x2,y2)是正比例函數(shù)圖象上的兩點,下列判斷中,正確的是A.y1>y2 B.y1<y2C.當x1<x2時,y1<y2 D.當x1<x2時,y1>y212.如圖是甲、乙兩名射擊運動員的10次射擊訓練成績的折線統(tǒng)計圖.觀察統(tǒng)計圖,下列關于甲、乙這10次射擊成績的方差判斷正確的是()A.甲的方差大于乙的方差 B.乙的方差大于甲的方差C.甲、乙的方差相等 D.無法判斷二、填空題(每題4分,共24分)13.已知直角三角形的周長為14,斜邊上的中線長為3.則直角三角形的面積為________.14.如圖,矩形ABCD中,AB=4,BC=8,對角線AC的垂直平分線分別交AD、BC于點E.F,連接CE,則△DCE的面積為___.15.若x1,x2是方程x2+x?1=0的兩個根,則x12+x22=____________.16.如圖,已知矩形ABCD的邊AB=3,AD=8,頂點A、D分別在x軸、y軸上滑動,在矩形滑動過程中,點C到原點O距離的最大值是______.17.不等式-->-1的正整數(shù)解是_____.18.我們規(guī)定:等腰三角形的頂角與一個底角度數(shù)的比值叫做等腰三角形的“特征值”,記作k,若k=,則該等腰三角形的頂角為______度.三、解答題(共78分)19.(8分)如圖,已知矩形ABCD的邊長AB=3cm,BC=6cm,某一時刻,動點M從點A出發(fā)沿AB方向以1cm/s的速度向點B勻速運動;同時,動點N從點D沿DA方向以2cm/s的速度向點A勻速運動.(1)經(jīng)過多少時間,△AMN的面積等于矩形ABCD面積的19(2)是否存在時刻t,使A、M、N為頂點的三角形與△ACD相似?若存在,求t的值;若不存在,請說明理由.20.(8分)某市推出電腦上網(wǎng)包月制,每月收取費用y(元)與上網(wǎng)時間x(小時)的函數(shù)關系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.(1)當x≥30,求y與x之間的函數(shù)關系式;(2)若小李4月份上網(wǎng)20小時,他應付多少元的上網(wǎng)費用?(3)若小李5月份上網(wǎng)費用為75元,則他在該月份的上網(wǎng)時間是多少?21.(8分)如圖,已知坐標平面內的三個點A(1,3),B(3,1),O(0,0),(1)請畫出把△ABO向下平移5個單位后得到的△A1B1O1的圖形;(2)請畫出將△ABO繞點O順時針旋轉90°后得到的△A2B2O2,并寫出點A的對應點A2的坐標。22.(10分)已知y=y(tǒng)1+y2,y1與x成正比例,y2與x-2成正比例,當x=1時,y=0;當x=-3時,y=4.(1)求y與x的函數(shù)關系式,并說明此函數(shù)是什么函數(shù);(2)當x=3時,求y的值.23.(10分)在四邊形中,對角線、相交于點,過點的直線分別交邊、、、于點、、、(1)如圖①,若四邊形是正方形,且,易知,又因為,所以(不要求證明)(2)如圖②,若四邊形是矩形,且,若,,,求的長(用含、、的代數(shù)式表示);(3)如圖③,若四邊形是平行四邊形,且,若,,,則.24.(10分)如圖,在ABCD中,點E,F(xiàn)分別在AD,BC邊上,且BE∥DF.求證:(1)四邊形BFDE是平行四邊形;(2)AE=CF.25.(12分)如圖,AC是平行四邊形ABCD的一條對角線,過AC中點O的直線分別交AD,BC于點E,F(xiàn).(1)求證:四邊形AECF是平行四邊形;(2)當EF與AC滿足什么條件時,四邊形AECF是菱形?并說明理由.26.如圖,在中,點,是直線上的兩點,,連結,,,.(1)求證:四邊形是平行四邊形.(2)若,,,四邊形是矩形,求的長.
參考答案一、選擇題(每題4分,共48分)1、C【解析】
根據(jù)等腰三角形的腰長=(周長-底邊長)÷2,把相關數(shù)值代入即可.【詳解】等腰三角形的腰長y=(20-x)÷2=-+1.故選C.【點睛】考查列一次函數(shù)關系式;得到三角形底腰長的等量關系是解決本題的關鍵.2、C【解析】
根據(jù)眾數(shù)定義首先求出x的值,再根據(jù)中位數(shù)的求法,求出中位數(shù).【詳解】解:數(shù)據(jù)2,x,7,3,5,3,2的眾數(shù)是2,說明2出現(xiàn)的次數(shù)最多,x是未知數(shù)時2,3,均出現(xiàn)兩次,.x=2.這組數(shù)據(jù)從小到大排列:2,2,2,3,3,5,7.處于中間位置的數(shù)是3,因而的中位數(shù)是3.故選:C.【點睛】本題考查的是平均數(shù)、眾數(shù)和中位數(shù).要注意,當所給數(shù)據(jù)有單位時,所求得的平均數(shù)、眾數(shù)和中位數(shù)與原數(shù)據(jù)的單位相同,不要漏單位.3、B【解析】
連接DE,由∠ABC=∠AEC=∠ADC=90°,根據(jù)圓周角定理的推論得到點A、B、C、D、E都在以AC為直徑的圓上,再利用矩形的性質可得AE=ME,即①正確;再根據(jù)圓周角定理得到∠AEB=∠ACB,∠DAC=∠CED,∠EAD=∠ECD,易證△AEF≌△CED,即可得到AB=AF,即②正確;由②得到∠ABF=∠AFB=45°,求出∠EMC=∠MCB+45°,而∠ECM=∠NCM+45°,即③正確;根據(jù)等腰三角形性質求出∠EAM=∠AME,推出∠EAM=45°+∠MAN,∠AME=45°+∠BAM,即可判斷(4).【詳解】連接DE.∵四邊形ABCD為矩形,△ACE為AC為底的等腰直角三角形,∴∠ABC=∠AEC=∠ADC=90°,AB=CD,AD=BC,∴點A.B.C.D.E都在以AC為直徑的圓上,∵AB=CD,∴弧AB=弧CD,∴∠AEB=∠CED,∴∠BED=∠BEC+∠CED=∠BEC+∠AEB=90°,∴BE⊥ED,故(1)正確;∵點A.B.C.D.E都在以AC為直徑的圓上,∴∠AEF=∠CED,∠EAF=∠ECD,又∵△ACE為等腰直角三角形,∴AE=CE,在△AEF和?CED中,∠AEF=∠CEDAE=CD∠EAF=∠ECD∴△AEF≌△CED,∴AF=CD,而CD=AB,∴AB=AF,即(2)正確;∴∠ABF=∠AFB=45°,∴∠EMC=∠MCB+45°,而∠ECM=∠NCM+45°,∵CM平分∠ACB交BN于M,∴∠EMC=∠ECM,∴EC=EM,∴EM=EA,即(3)正確;∵AB=AF,∠BAD=90°,EM=EA,∴∠ABF=∠CBF=45°,∠EAM=∠AME,∵△AEC是等腰直角三角形,∴∠EAC=45°,∴∠EAM=45°+∠MAN,∠AME=∠ABM+∠BAM=45°+∠BAM,∴∠BAM=∠NAM,∴(4)正確;故選D.【點睛】此題考查等腰三角形的判定與性質,圓周角定理,等腰直角三角形,解題關鍵在于作輔助線4、B【解析】
根據(jù)平方、相反數(shù)的定義、絕對值的性質依次判定各項后即可解答.【詳解】①平方等于64的數(shù)是±8;②若a,b互為相反數(shù),ab≠0,則;③若,可得a≥0,則的值為負數(shù)或0;④若ab≠0,當a>0,b>0時,=1+1=2;當a>0,b<0時,=1-1=0;當a<0,b>0時,=-1+1=0;當a<0,b<0時,=-1-1=-2;所以的取值在0,1,2,-2這四個數(shù)中,不可取的值是1.綜上,正確的結論為②,故選B.【點睛】本題考查了平方的計算、相反數(shù)的定義及絕對值的性質,熟練運用相關知識是解決問題的關鍵.5、D【解析】
連接BD,根據(jù)線段垂直平分線的性質可以證明△ABD是等腰三角形,在直角△BCD中根據(jù)30°角所對的直角邊等于斜邊的一半求出∠BDC的度數(shù),然后利用三角形的外角的性質即可求解.【詳解】連接BD,∵DE垂直平分AB于E,∴AD=BD=2BC,∴∵∴∠BDC=30°,又∵BD=DA,∴.故選D.【點睛】本題考查了線段的垂直平分線的性質以及等腰三角形的性質,正確求得∠BDC的度數(shù)是關鍵.6、B【解析】
由題意得:x+1>0,解得:x>-1.故選B.7、C【解析】
先求得∠ACB=30°,再求出AB=4cm,由勾股定理求得AD的長.【詳解】∵△AOB是等邊三角形,∴∠BAC=60°,∴∠ACB=30°,∵AC=8cm,∴AB=4cm,在Rt△ABC中,cm,∵AD=BC,∴AD的長為4cm.故選:C.【點睛】本題考查的是矩形的性質,關鍵是根據(jù)在直角三角形中,30°的銳角所對的直角邊等于斜邊的一半;以及勾股定理解答.8、C【解析】
連接OB,根過B作BM⊥x軸于M,據(jù)勾股定理求出OB,根據(jù)矩形的性質得出AC=OB,即可得出答案.【詳解】解:連接OB,過B作BM⊥x軸于M,
∵點B的坐標是(1,4),
∴OM=1,BM=4,由勾股定理得:OB=,
∵四邊形OABC是矩形,
∴AC=OB,
∴AC=,
故選:C.【點睛】本題考查了點的坐標、矩形的性質、勾股定理等知識點,能根據(jù)矩形的性質得出AC=OB是解此題的關鍵.9、B【解析】
根據(jù)最簡二次根式的定義即可判斷.【詳解】A.=2,故不是最簡二次根式;B.是最簡二次根式;C.根式含有分數(shù),不是最簡二次根式;D.有可以開方的m2,不是最簡二次根式.故選B.【點睛】此題主要考查最簡二次根式的判斷,解題的關鍵是熟知最簡二次根式的定義.10、D【解析】
根據(jù)兩直線平行,同旁內角互補求出∠B,再根據(jù)等腰三角形兩底角相等求出∠ACB,然后根據(jù)兩直線平行,內錯角相等可得∠DAC=∠ACB,再根據(jù)等腰三角形兩底角相等列式計算即可得解.【詳解】∵AD∥BC,∴∠B=180°﹣∠BAD=180°﹣108°=72°,∵BC=AC,∴∠BAC=∠B=72°,∴∠ACB=180°﹣2×72°=36°,∵AD∥BC,∴∠DAC=∠ACB=36°,∵AD=CD,∴∠DCA=∠DAC=36°,∴∠D=180°﹣36°×2=108°,故選D.【點睛】本題考查了等腰三角形的性質,平行線的性質,熟練掌握相關知識是解題的關鍵.11、D【解析】試題分析:∵,k=<0,∴y隨x的增大而減小.∴當x1<x1時,y1>y1.故選D.12、A【解析】
結合圖形,乙的成績波動比較小,則波動大的方差就小.【詳解】解:從圖看出:乙選手的成績波動較小,說明它的成績較穩(wěn)定,甲的波動較大,則其方差大.故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.二、填空題(每題4分,共24分)13、2【解析】
由∠ACB=90°,CD是斜邊上的中線,求出AB=1,根據(jù)AB+AC+BC=14,求出AC+BC,根據(jù)勾股定理得出AC2+BC2=AB2=31推出AC?BC=14,根據(jù)SAC?BC即可求出答案.【詳解】如圖,∵∠ACB=90°,CD是斜邊上的中線,∴AB=2CD=1.∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=31,∴(AC+BC)2﹣2AC?BC=31,∴AC?BC=14,∴SAC?BC=2.故答案為:2.【點睛】本題考查了對直角三角形斜邊上的中線,勾股定理,三角形的面積等知識點的理解和掌握,能根據(jù)性質求出AC?BC的值是解答此題的關鍵.14、6【解析】
根據(jù)線段垂直平分線上的點到線段兩端點的距離相等的性質可得AE=CE,設CE=x,表示出ED的長度,然后在Rt△CDE中,利用勾股定理列式計算,再利用三角形面積公式解答即可.【詳解】∵四邊形ABCD是矩形,∴CD=AB=4,AD=BC=8,∵EO是AC的垂直平分線,∴AE=CE,設CE=x,則ED=AD?AE=8?x,在Rt△CDE中,CE=CD+ED,即x=4+(8?x),解得:x=5,即CE的長為5,DE=8?5=3,所以△DCE的面積=×3×4=6,故答案為:6.【點睛】此題考查線段垂直平分線的性質,矩形的性質,解題關鍵在于得出AE=CE.15、3【解析】
先根據(jù)根與系數(shù)的關系求出x1+x2和x1?x2的值,再利用完全平方公式對所求代數(shù)式變形,然后把x1+x2和x1?x2的值整體代入計算即可.【詳解】∵x1,x2是方程x2+x?1=0的兩個根,
∴x1+x2=?=?=?1,x1?x2===?1,
∴x12+x22=(x1+x2)2?2x1?x2=(?1)2?2×(?1)=1+2=3.
故答案是:3.【點睛】本題考查根與系數(shù)的關系,解題的關鍵是掌握根與系數(shù)的關系.16、1【解析】
取AD的中點E,連接OE,CE,OC,根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出OE,然后根據(jù)勾股定理即可求CE,然后根據(jù)兩點之間線段最短即可求出OC的最大值.【詳解】如圖,取AD的中點E,連接OE,CE,OC,∵∠AOD=10°,∴Rt△AOD中,OE=AD=4,又∵∠ADC=10°,AB=CD=3,DE=4,∴Rt△CDE中,CE==5,又∵OC≤CE+OE=1(當且僅當O、E、C共線時取等號),∴OC的最大值為1,即點C到原點O距離的最大值是1,故答案為:1.【點睛】此題考查的是直角三角形的性質和求線段的最值問題,掌握直角三角形斜邊上的中線等于斜邊的一半、利用勾股定理解直角三角形和兩點之間線段最短是解決此題的關鍵.17、1,1【解析】
首先確定不等式的解集,然后再找出不等式的特殊解.【詳解】解:解不等式得:x<3,故不等式的正整數(shù)解為:1,1.故答案為1,1.【點睛】本題考查了一元一次不等式的整數(shù)解,正確解不等式,求出解集是解答本題的關鍵,解不等式應根據(jù)不等式的基本性質.18、1【解析】
根據(jù)等腰三角形的性質得出∠B=∠C,根據(jù)三角形內角和定理和已知得出5∠A=180°,求出即可.【詳解】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的頂角與一個底角度數(shù)的比值叫做等腰三角形的“特征值”,記作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=1°,故答案為1.【點睛】本題考查了三角形內角和定理與等腰三角形的性質,解題的關鍵是能根據(jù)等腰三角形性質、三角形內角和定理與已知條件得出5∠A=180°.三、解答題(共78分)19、(1)1秒或2秒,(2)存在,32秒或12【解析】試題分析:(1)設經(jīng)過x秒后,根據(jù)△AMN的面積等于矩形ABCD面積的19,得出方程解方程即可;(2)假設經(jīng)過t秒時,以A,M試題解析:(1)設經(jīng)過x秒后,△AMN的面積等于矩形ABCD面積的19則有:12(6-2x)x=1解方程,得x1經(jīng)檢驗,可知x1=1,x2=2符合題意,所以經(jīng)過1秒或2秒后,(2)假設經(jīng)過t秒時,以A,M,由矩形ABCD,可得∠CDA=∠MAN=90因此有AMAN=即t6-2t=3解①,得t=32經(jīng)檢驗,t=32或t=125都符合題意,所以動點M,N同時出發(fā)后,經(jīng)過32考點:1.矩形的性質2.相似三角形的判定與性質.20、(1)y=3x﹣30;(2)4月份上網(wǎng)20小時,應付上網(wǎng)費60元;(3)5月份上網(wǎng)35個小時.【解析】【分析】(1)由圖可知,當x≥30時,圖象是一次函數(shù)圖象,設函數(shù)關系式為y=kx+b,使用待定系數(shù)法求解即可;(2)根據(jù)題意,從圖象上看,30小時以內的上網(wǎng)費用都是60元;(3)根據(jù)題意,因為60<75<90,當y=75時,代入(1)中的函數(shù)關系計算出x的值即可.【詳解】(1)當x≥30時,設函數(shù)關系式為y=kx+b,則,解得,所以y=3x﹣30;(2)若小李4月份上網(wǎng)20小時,由圖象可知,他應付60元的上網(wǎng)費;(3)把y=75代入,y=3x-30,解得x=35,∴若小李5月份上網(wǎng)費用為75元,則他在該月份的上網(wǎng)時間是35小時.【點睛】本題考查了一次函數(shù)的應用,待定系數(shù)法求一次函數(shù)關系式,準確識圖、熟練應用待定系數(shù)法是解題的關鍵.21、(1)見解析(2)(3,-1)【解析】
(1)找到△ABO的三個頂點A、B、O、分別向下平移5個單位,找的它們的對應點A1、B1、O1,連接A1B1、B1O1、O1A1,即可得到題目所要求圖形△A1B1O1.(2)將△ABO繞點O順時針旋轉90°,則旋轉中心O點的對應點O2的坐標仍為(0、0),OA可以看成它所在長方形的對角線,通過旋轉長方形即可得到OA的對應線段O2A2,同理得出OB的對應線段O2B2,連接A2B2即可得到△A2B2O2.【詳解】(1)(2)由圖可知,A2的坐標為(3,﹣1).【點睛】本題主要考查圖形的平移與旋轉,旋轉是本題的難點.22、(1),是的一次函數(shù);(2).【解析】【試題分析】(1)根據(jù)正比例函數(shù)的定義設:y1=k1x(k1≠0),y2=,根據(jù)y=y(tǒng)1+y2,得y=k1x+,根據(jù)題意,列方程組:解得:.再代入y=k1x+即可.
(2)將x=3代入(1)中的函數(shù)解析式,求函數(shù)值即可.【試題解析】(1)設y1=k1x(k1≠0),y2=∴y=k1x+
∵當x=1時,y=-1;當x=3時,y=5,
解得:∴y=-x+1.則y是x的一次函數(shù).(2)當x=3時,y=-2.【方法點睛】本題目是一道考查正比例函數(shù)與一次函數(shù)的問題,關鍵注意:y2與x-2成正比例,設為y2=.23、(1)見解析;(2);(3)【解析】
(1)根據(jù)正方形的性質和全等三角形的性質即可得出結論;(2)過作于,于,根據(jù)圖形的面積得到,繼而得出結論;(3)過作,,則,,根據(jù)平行四邊形的面積公式得出,根據(jù)三角形的面積公式列方程即可得出結論.【詳解】解:(1)如圖①,∵四邊形ABCD是正方形,∴,,∵,∴,∴.(2)如圖②,過作于,于,∵∴∵,∴,∴;(2)如圖③,過作,,則,,∵,∴,∴,∵,,∴,∵,,∴,,,;故答案為:.【點睛】本題考查的知識點是正方形的性質,通過作輔助線,利用面積公式求解是解此題的關鍵.24、(1)見解析;(2)見解析.【解析】
(1)由四邊形ABCD是平行四邊形,可得AD∥BC,又BE∥DF,可證四邊形BFDE是平行四邊形;(2)由四邊形ABCD是平行四邊形,可得AD=BC,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 林麝代養(yǎng)協(xié)議書5篇
- 科技園區(qū)廠房租賃協(xié)議3篇
- 西昌學院本科畢業(yè)設計答辯匯報
- 大額流動資金貸款協(xié)議書6篇
- 產品承包合同范本8篇
- 無機膠粘劑項目績效評估報告
- 氨泄漏事故急救措施
- 陳涉世家板書設計
- 2025遼寧工業(yè)大學輔導員考試試題及答案
- 文創(chuàng)產業(yè)運營分析框架
- Unit 1 Section B(1a-Project)課件人教版2024新教材七年級上冊英語
- DL∕T 516-2017 電力調度自動化運行管理規(guī)程
- 古希臘文明智慧樹知到期末考試答案章節(jié)答案2024年復旦大學
- 2024年廣東省廣州市天河區(qū)七年級(下)期末數(shù)學試卷含答案
- DZ∕T 0399-2022 礦山資源儲量管理規(guī)范(正式版)
- 離婚糾紛-模擬法庭劇本
- 管培生(校招生)培養(yǎng)方案(計劃)落地完整版
- MOOC 計算機系統(tǒng)局限性-華東師范大學 中國大學慕課答案
- 六年級語文總復習課《修改病句》修改課件市公開課一等獎省賽課獲獎課件
- 位置度公差及其計算課件
- SJ-T 11841.2.2-2022 顯示系統(tǒng)視覺舒適度 第2-2部分:平板顯示-藍光測量方法
評論
0/150
提交評論