




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
南師附中集團2025屆八年級數學第二學期期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.一個事件的概率不可能是()A.1 B.0 C. D.2.要使式子有意義,則x的值可以是()A.2 B.0 C.1 D.93.若在實數范圍內有意義,則的取值范圍是()A. B. C. D.且4.如圖,已知,點D、E、F分別是、、的中點,下列表示不正確的是()A. B. C. D.5.如圖,P是正方形ABCD的對角線BD上一點,PE⊥BC于E,PF⊥CD于F,連接EF,給出下列三個結論:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP.其中正確結論的序號是()A.①② B.①③ C.②③ D.①②③6.下列說法:①實數和數軸上的點是一一對應的;②無理數是開方開不盡的數;③負數沒有立方根;④16的平方根是±4,用式子表示是16=±4.其中錯誤的個數有(A.0個 B.1個 C.2個 D.3個7.已知關于的一元二次方程的一個根是,則的值為()A. B. C. D.8.如圖,要測量被池塘隔開的A、C兩點間的距離,李師傅在AC外任選一點B,連接BA和BC,分別取BA和BC的中點E、F,量得EF兩點間距離等于23米,則A、C兩點間的距離為()米A.23 B.46 C.50 D.29.若y+1與x-2成正比例,當時,;則當時,的值是()A.-2 B.-1 C.0 D.110.關于反比例函數,下列說法中錯誤的是()A.它的圖象分布在一、三象限B.它的圖象過點(-1,-3)C.當x>0時,y的值隨x的增大而增大D.當x<0時,y的值隨x的增大而減小11.用配方法解方程,配方正確的是()A. B. C. D.12.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.二、填空題(每題4分,共24分)13.在平面內將一個圖形繞某一定點旋轉________度,圖形的這種變化叫做中心對稱;14.如圖,矩形ABOC的頂點A的坐標為(﹣4,5),D是OB的中點,E是OC上的一點,當△ADE的周長最小時,點E的坐標是_____.15.如圖,△A1B1A2,△A2B2A3,△A3B3A4,...,△AnBnAn+1都是等腰直角三角形,其中點A1、A2、…、An,在x軸上,點B1、B2、…Bn在直線y=x上,已知OA1=1,則OA2019的長是_____.16.數據2,0,1,9,0,6,1,6的中位數是______.17.如圖,菱形ABCD的邊長為2,點E,F分別是邊AD,CD上的兩個動點,且滿足AE+CF=BD=2,設△BEF的面積為S,則S的取值范圍是______.18.計算:__.三、解答題(共78分)19.(8分)如圖,、是的對角線上的兩點,且,,連接、、、.(1)求證:四邊形為平行四邊形;(2)若,,求的長.20.(8分)如圖,?ABCD的對角線AC,BD相交于點O,EF過點O且與AD,BC分別相交于點E,F.求證:OE=OF.21.(8分)解不等式組:,把它的解集在數軸上表示出來,并寫出其整數解.22.(10分)如圖,△ABC與△AFD為等腰直角三角形,∠FAD=∠BAC=90°,點D在BC上,則:(1)求證:BF=DC.(2)若BD=AC,則求∠BFD的度數.23.(10分)如圖,4×6的正方形網格中,每個小正方形的頂點稱為格點,A,B,C均為格點.在下列各圖中畫出四邊形ABCD,使點D也為格點,且四邊形ABCD分別符合下列條件:(1)是中心對稱圖形(畫在圖1中)(2)是軸對稱圖形(畫在圖2中)(3)既是軸對稱圖形,又是中心對稱圖形(畫在圖3中)24.(10分)某校七、八年級各有學生400人,為了解這兩個年級普及安全教育的情況,進行了抽樣調查,過程如下選擇樣本,收集數據從七、八年級各隨機抽取20名學生,進行安全教育考試,測試成績(百分制)如下:七年級8579898389986889795999878589978689908977八年級7194879255949878869462999451889794988591分組整理,描述數據(1)按如下頻數分布直方圖整理、描述這兩組樣本數據,請補全八年級20名學生安全教育頻數分布直方圖;(2)兩組樣本數據的平均數、中位數、眾數、優秀率如下表所示,請補充完整;得出結論,說明理由.(3)整體成績較好的年級為___,理由為___(至少從兩個不同的角度說明合理性).25.(12分)直線L與y=2x+1的交于點A(2,a),與直線y=x+2的交于點B(b,1)(1)求a,b的值;(2)求直線l的函數表達式;(3)求直線L、x軸、直線y=2x+1圍成的圖形的面積.26.如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(-2,1),B(-1,4),C(-3,3).(1)畫出△ABC繞點B逆時針旋轉90°得到的△A1BC1.(2)以原點O為位似中心,位似比為2:1,在y軸的左側,畫出將△ABC放大后的△A2B2C2,并寫出A2點的坐標_________.
參考答案一、選擇題(每題4分,共48分)1、D【解析】
根據概率的意義解答即可.【詳解】解:∵>1,且任何事件的概率不能大于1小于0,∴一個事件的概率不可能是,故選:D.【點睛】此題考查了概率的意義,必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那么0<P(A)<1.2、D【解析】
式子為二次根式,根據二次根式的性質,被開方數大于等于0,可得x-50,解不等式就可得到答案.【詳解】∵式子有意義,∴x-50,∴x5,觀察個選項,可以發現x的值可以是9.故選D.【點睛】本題考查二次根式有意義的條件.3、D【解析】
根據二次根式的性質和分式的意義,被開方數大于等于1,分母不等于1,就可以求解.【詳解】根據二次根式有意義,分式有意義得:x+1≥1且x≠1,解得:x≥-1且x≠1.故選D.【點睛】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數是非負數.4、A【解析】
根據中位線的性質可得DB=EF=AD,且DB∥EF,DE=BF,且DF∥BF,再結合向量的計算規則,分別判斷各選項即可.【詳解】∵點D、E、F分別是AB、AC、BC的中點∴FE∥BD,且EF=DB=AD同理,DE∥BF,且DE=BFA中,∵未告知AC=AB,∴、無大小關系,且方向也不同,錯誤;B中,∥,正確;C中,DB=EF,且與方向相反,∴,正確;D中,,正確故選:A【點睛】本題考查中位線定理和向量的簡單計算,解題關鍵是利用中位線定理,得出各邊之間的大小和位置關系.5、B【解析】
連接PC,根據正方形的對角線平分一組對角可得∠ABP=∠CBP=45°,然后利用“邊角邊”證明△ABP和△CBP全等,根據全等三角形對應邊相等可得AP=PC,對應角相等可得∠BAP=∠BCP,再根據矩形的對角線相等可得EF=PC,于是得到結論.【詳解】解:如圖,連接PC,在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,∵在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴AP=PC,∠BAP=∠BCP,又∵PE⊥BC,PF⊥CD,∴四邊形PECF是矩形,∴PC=EF,∠BCP=∠PFE,∴AP=EF,∠PFE=∠BAP,故①③正確;只有點P為BD的中點或PD=AD時,△APD是等腰三角形,故②錯誤;故選:B.【點睛】本題主要考查了正方形的性質,正確證明△ABP≌△CBP,以及理解P的任意性是解決本題的關鍵.6、D【解析】
直接利用相關實數的性質分析得出答案.【詳解】①實數和數軸上的點是一一對應的,正確;②無理數是開方開不盡的數,錯誤,無理數是無限不循環小數;③負數沒有立方根,錯誤,負數有立方根;④16的平方根是±4,用式子表示是:16=±4故選:D.【點睛】此題考查實數,解題關鍵在于掌握其定義.7、C【解析】
把x=-2代入,即可求出a的值.【詳解】把x=-2代入,得4-2a-a=0,∴a=.故選C.【點睛】本題考查了一元二次方程解的定義,能使一元二次方程成立的未知數的值叫作一元二次方程的解,熟練掌握一元二次方程解得定義是解答本題的關鍵.8、B【解析】
先判斷出EF是△ABC的中位線,再根據三角形的中位線平行于第三邊并且等于第三邊的一半可得AC=2EF.【詳解】解:∵點E、F分別是BA和BC的中點,∴EF是△ABC的中位線,∴AC=2EF=2×23=46米.故選:B.【點睛】本題考查了三角形的中位線平行于第三邊并且等于第三邊的一半,熟記定理并準確識圖是解題的關鍵.9、C【解析】
由y+1與x-2成正比例可設y+1=k(x-2),再把時,代入求出k的值,把代入解析式解答即可.【詳解】解:∵y+1與x-2成正比例,
∴設y+1=k(x-2),
∵時,,
∴1+1=k(1-2),解得k=-1,
∴y+1=-(x-2),即y=1-x;
把代入y=1-1=1.故選:C.【點睛】本題考查待定系數法求一次函數的解析式,先根據y+1與x-2成正比例設出一此函數的解析式是解題的關鍵.10、C【解析】試題分析:反比例函數的性質:當時,圖象位于一、三象限,在每一象限,y隨x的增大而減小;當時,圖象位于二、四象限,在每一象限,y隨x的增大而增大.解:A、因為,所以它的圖象分布在一、三象限,B、它的圖象過點(-1,-3),D、當,y的值隨x的增大而減小,均正確,不符合題意;C、當,y的值隨x的增大而減小,故錯誤,本選項符合題意.考點:反比例函數的性質點評:反比例函數的性質是初中數學的重點,貫穿于整個初中數學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.11、C【解析】
把常數項-4移項后,應該在左右兩邊同時加上一次項系數-2的一半的平方.【詳解】解:把方程x2-2x-4=0的常數項移到等號的右邊,得到x2-2x=4,方程兩邊同時加上一次項系數一半的平方,得到x2-2x+1=4+1,配方得(x-1)2=1.故選C.【點睛】本題考查了解一元二次方程--配方法.配方法的一般步驟:(1)把常數項移到等號的右邊;(2)把二次項的系數化為1;(3)等式兩邊同時加上一次項系數一半的平方.12、C【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C、是軸對稱圖形,又是中心對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.二、填空題(每題4分,共24分)13、1【解析】
根據中心對稱的定義即可求解.【詳解】在平面內將一個圖形繞某一定點旋轉1度,圖形的這種變化叫做中心對稱.故答案為1.【點睛】本題考查了中心對稱的定義:把一個圖形繞著某個點旋轉1°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心,這兩個圖形中的對應點叫做關于中心的對稱點.掌握定義是解題的關鍵.14、(0,)【解析】
作點A關于y軸的對稱點A',連接A'D,此時△ADE的周長最小值為AD+DA'的長;E點坐標即為直線A'D與y軸的交點;【詳解】解:作點A關于y軸的對稱點A',連接A'D,此時△ADE的周長最小值為AD+DA'的長;∵A的坐標為(﹣4,5),D是OB的中點,∴D(﹣2,0),由對稱可知A'(4,5),設A'D的直線解析式為y=kx+b,∴,∴,∴,∴E(0,);故答案為(0,);【點睛】本題考查矩形的性質,線段的最短距離;能夠利用軸對稱求線段的最短距離,將AE+DE的最短距離轉化為線段A'D的長是解題的關鍵.15、1【解析】
根據一次函數的性質可得∠B1OA1=45°,然后求出△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,然后根據等腰直角三角形斜邊上的高等于斜邊的一半求出OA3,同理求出OA4,然后根據變化規律寫出即可.【詳解】解:∵直線為y=x,∴∠B1OA1=45°,∵△A2B2A3,∴B2A2⊥x軸,∠B2A3A2=45°,∴△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,∴OA3=2A2B2=2OA2=2×2=4,同理可求OA4=2OA3=2×4=23,…,所以,OA2019=1.故答案為:1.【點睛】本題考查了一次函數圖象上點的坐標特征,等腰直角三角形的性質,熟記性質并確定出等腰直角三角形是解題的關鍵.16、1.2【解析】
根據中位數的意義,將這組數據從小到大排序后,處在第4、2位置的兩個數的平均數是中位數,即可解答.【詳解】解:將這組數據從小到大排序后,處在第4、2位的兩個數的平均數為(1+2)÷2=1.2,因此中位數是1.2.故答案為:1.2.【點睛】此題考查中位數的意義,把一組數據從小到大排列后找出處在中間位置的一個數或兩個數的平均數是解題關鍵.17、≤S≤.【解析】
先證明△BDE≌△BCF,再求出△BEF為正三角形即可解答.【詳解】解:∵菱形ABCD的邊長為2,BD=2,∴△ABD和△BCD都為正三角形,∴∠BDE=∠BCF=60°,BD=BC,∵AE+DE=AD=2,而AE+CF=2,∴DE=CF,∴△BDE≌△BCF(SAS);∴∠DBE=∠CBF,BE=BF,∵∠DBC=∠DBF+∠CBF=60°,∴∠DBF+∠DBE=60°即∠EBF=60°,∴△BEF為正三角形;設BE=BF=EF=x,則S=?x?x?sin60°=x2,當BE⊥AD時,x最小=2×sin60°=,∴S最小=×()2=,當BE與AB重合時,x最大=2,∴S最大=×22=,∴≤S≤.故答案為:≤S≤.【點睛】本題考查三角形全等和幾何的綜合運用,找出表示面積的方法是解題關鍵.18、-【解析】
直接利用二次根式的性質分別計算得出答案.【詳解】解:原式.故答案為:.【點睛】此題主要考查了二次根式的加減運算,正確化簡二次根式是解題關鍵.三、解答題(共78分)19、(1)證明見解析(2)【解析】
(1)根據平行四邊形的性質,證明,即可解答.(2)由(1)得到,,再利用勾股定理即可解答.【詳解】(1)證明:∵,,∴.∴.在中,,,∴.∴.∴.∴四邊形是平行四邊形.(2)∵四邊形是平行四邊形,∴,.在中,.∴.【點睛】此題考查平行四邊形的判定與性質,勾股定理,解題關鍵在于判定三角形全等.20、見解析.【解析】
根據“ASA”證明ΔAOE?ΔCOF,即可證明OE=OF.【詳解】證明:∵四邊形ABCD是平行四邊形,∴OA=OC,AD//BC.∴∠OAE=∠OCF.在ΔOAE和ΔOCF,∠OAE=∠OCFOA=OC∴ΔAOE?ΔCOF,∴OE=OF.【點睛】本題考查了平行四邊形的性質,全等三角形的判定與性質,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(即全等三角形的對應邊相等、對應角相等)是解題的關鍵.21、,x的整數解為﹣1,﹣1,0,1,1.【解析】
先對不等式組中的兩個不等式進行分別求解,求得解集,再將解集表示在數軸上.【詳解】解:解不等式①,,解不等式②,,∴,解集在數軸上表示如下:∴x的整數解為﹣1,﹣1,0,1,1.【點睛】本題考查不等式組和數軸,解題的關鍵是熟練掌握不等式組的求解和有理數在數軸上的表示.22、(1)見解析;(2)67.5°.【解析】
(1)先根據等腰直角三角形的性質得出AB=AC,AF=AD,∠FAD=∠BAC=90°,則有∠BAF=∠CAD,即可利用SAS證明△ABF≌△ACD,則結論可證;(2)先根據等腰直角三角形的性質和三角形內角和定理求出的度數,然后由△ABF≌△ACD得出∠ABF=∠ACD=45°,最后利用∠BFD=180°﹣∠ABF﹣∠ABC﹣∠BDF即可求解.【詳解】(1)∵△ABC與△AFD為等腰直角三角形∴AB=AC,AF=AD,∠FAD=∠BAC=90°,∴∠BAF=∠CAD,且AB=AC,AF=AD∴△ABF≌△ACD(SAS)∴BF=DC(2)∵△ABC與△AFD為等腰直角三角形∴∠ABC=∠ACB=∠ADF=45°∵AB=AC=BD∴∠BDA=∠BAD=67.5°∴∠BDF=22.5°∵△ABF≌△ACD,∴∠ABF=∠ACD=45°∴∠BFD=180°﹣∠ABF﹣∠ABC﹣∠BDF=67.5°【點睛】本題主要考查等腰直角三角形的性質,全等三角形的判定及性質,三角形內角和定理,掌握等腰直角三角形的性質,全等三角形的判定及性質,三角形內角和定理是解題的關鍵.23、(1)詳見解析;(2)詳見解析;(3)詳見解析;【解析】
(1)以AB、BC為鄰邊作平行四邊形即可;(2)作點B關于直線AC的對稱點D,然后連接AD、CD即可;(3)以AB、BC為鄰邊作菱形即可.【詳解】(1)解:如圖:(2)解:如圖:(3)解:如圖:【點睛】本題考查了軸對稱和中心對稱作圖.根據已知條件準確構造符合條件的圖形是解答本題的關鍵.24、(1)見解析;(2)91.5,94,55%;(3)八年級,八年級的中位數和優秀率都高于七年級.【解析】
(1)由收集的數據即可得;根據題意不全頻數分布直方圖即可;(2)根據眾數和中位數和優秀率的定義求解可得;(3)八年級的中位數和優秀率都高于七年級即可的結論.【詳解】(1)補全八年級20名學生安全教育頻數分布直方圖如圖所示,(2)八年級20名學生安全教育考試成績按從小到大的順序排列為:51556271788586878891929494949494979
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 文旅古鎮景區委托運營管理及旅游紀念品銷售合同
- 2025年抗高血壓藥項目建議書
- 生物科技領域基因編輯專利無效爭議代理合同
- 腎內護理課件
- 網絡直播平臺主播形象使用權購買合同
- 基因編輯技術人才培養與就業合作協議
- 生態環境影響評估工程師委托聘用協議
- 國際化智能穿戴設備專利許可及全球市場推廣合同
- 高速城市有軌電車接觸網設計與施工一體化合同
- 婚姻穩定性保障與不可抗力事件忠誠協議修訂執行
- 民間游戲體育游戲課程設計
- 安奈拉唑鈉腸溶片-臨床用藥解讀
- 停車場運營維護管理投標方案技術標
- AI賦能教育創新
- 田徑運動會檢查員報告表
- 業主維權授權委托書范文
- 第四代EGFR-C797S藥物管線及專利調研報告
- 有機硅化學課件-有機硅化合物的化學鍵特性
- 蒸汽和飽和蒸汽熱焓表
- 純水管道施工方案-2
- 企業清產核資報表
評論
0/150
提交評論