




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
江蘇省揚州市江都區(qū)城區(qū)2025年八下數(shù)學期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.數(shù)據(jù)0,1,2,3,x的平均數(shù)是2,則這組數(shù)據(jù)的方差是()A.2 B. C.10 D.2.如圖,?ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②S?ABCD=AB?AC;③OB=AB;④OE=BC,成立的個數(shù)有()A.1個B.2個C.3個D.4個3.在下列四個新能源汽車車標的設計圖中,屬于中心對稱圖形的是()A. B. C. D.4.總書記提出了未來五年“精準扶貧”的戰(zhàn)略構(gòu)想,意味著每年要減貧約11700000人,將數(shù)據(jù)11700000用科學記數(shù)法表示為()A.1.17×107 B.11.7×106 C.0.117×107 D.1.17×1085.正方形的邊長為,在其的對角線上取一點,使得,以為邊作正方形,如圖所示,若以為原點建立平面直角坐標系,點在軸正半軸上,點在軸的正半軸上,則點的坐標為()A. B. C. D.6.下列各式中,最簡二次根式為()A. B. C. D.7.如圖,△ABC中,AB=AC=5,BC=6,點D在BC上,且AD平分∠BAC,則AD的長為()A.6 B.5 C.4 D.38.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.9.如圖,△ABC的周長為17,點D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為點N,∠ACB的平分線垂直于AD,垂足為點M,若BC6,則MN的長度為()A. B.2 C. D.310.不等式組有()個整數(shù)解.A.2 B.3 C.4 D.511.對于任意的正數(shù)m,n定義運算※為:m※n=m-n(m≥n)mA.2-46 B.2 C.25 D.2012.如圖,菱形ABCD的對角線AC、BD的長分別為6和8,則這個菱形的周長是()A.20 B.24 C.40 D.48二、填空題(每題4分,共24分)13.寫出一個二次項系數(shù)為1,解為1與﹣3的一元二次方程:____________.14.“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數(shù)學的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設直角三角形較長直角邊長為a,較短直角邊長為b,若ab=8,大正方形的面積為25,則小正方形的邊長為_____.15.亞洲陸地面積約為4400萬平方千米,將44000000用科學記數(shù)法表示為_____.16.當k取_____時,100x2﹣kxy+4y2是一個完全平方式.17.如圖,在△ABC中,點D,E分別是BC,AC的中點,AB=8,則DE的長為________.18.一組數(shù)據(jù)2,3,1,3,5,4,這組數(shù)據(jù)的眾數(shù)是___________.三、解答題(共78分)19.(8分)如圖,已知直角梯形,,,過點作,垂足為點,,,點是邊上的一動點,過作線段的垂直平分線,交于點,并交射線于點.(1)如圖1,當點與點重合時,求的長;(2)設,,求與的函數(shù)關系式,并寫出定義域;(3)如圖2,聯(lián)結(jié),當是等腰三角形時,求的長.20.(8分)如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE=OC,連接CE、OE,連接AE交OD于點F.(1)求證:OE=CD;(2)若菱形ABCD的邊長為6,∠ABC=60°,求AE的長.21.(8分)第二十四屆冬季奧林匹克運動會將于2022年在北京市和張家口市舉行.為了調(diào)查學生對冬奧知識的了解情況,從甲、乙兩校各隨機抽取20名學生進行了相關知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行了整理、描述和分析.下面給出了部分信息.a(chǎn).甲校20名學生成績的頻數(shù)分布表和頻數(shù)分布直方圖如下:b.甲校成績在的這一組的具體成績是:8788888889898989c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)、方差如下:根據(jù)以上圖表提供的信息,解答下列問題:(1)表1中a=;表2中的中位數(shù)n=;(2)補全圖1甲校學生樣本成績頻數(shù)分布直方圖;(3)在此次測試中,某學生的成績是87分,在他所屬學校排在前10名,由表中數(shù)據(jù)可知該學生是校的學生(填“甲”或“乙”),理由是;(4)假設甲校200名學生都參加此次測試,若成績80分及以上為優(yōu)秀,估計成績優(yōu)秀的學生人數(shù)為__________.22.(10分)學習了統(tǒng)計知識后,小明就本班同學的上學方式進行了一次調(diào)查統(tǒng)計,圖(1)和圖(2)是他通過采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題.(1)該班共有名學生;(2)在圖(1)中,將表示“步行”的部分補充完整;(3)扇形圖中表示騎車部分所占扇形的圓心角是.(4)如果小明所在年級共計800人,請你根據(jù)樣本數(shù)據(jù),估計一下該年級步行上學的學生人數(shù)是多少?23.(10分)如圖,正方形網(wǎng)格中的每個小正方形邊長都為1,每個小正方形的頂點叫做格點.(1)以格點為頂點畫,使三這長分別為;(2)若的三邊長分別為m、n、d,滿足,求三邊長,若能畫出以格點為頂點的三角形,請畫出該格點三角形.24.(10分)已知一個三角形的三邊長分別為,求這個三角形的周長(要求結(jié)果化簡).25.(12分)已知四邊形是菱形,點分別在上,且,點分別在上,與相交于點.(1)如圖1,求證:四邊形是菱形;(2)如圖2,連接,在不添加任何輔助線的情況下,請直接寫出面積相等的四邊形26.某商場購進甲、乙兩種空調(diào)共40臺.已知購進一臺甲種空調(diào)比購進一臺乙種空調(diào)進價多0.2萬元;用36萬元購進乙種空調(diào)數(shù)量是用18萬元購進甲種空調(diào)數(shù)量的4倍.請解答下列問題:(1)求甲、乙兩種空調(diào)每臺進價各是多少萬元?(2)若商場預計投入資金不多于11.5萬元用于購買甲、乙兩種空調(diào),且購進甲種空調(diào)至少14臺,商場有哪幾種購進方案?
參考答案一、選擇題(每題4分,共48分)1、A【解析】試題分析:先根據(jù)平均數(shù)公式求得x的值,再根據(jù)方差的計算公式求解即可.解:由題意得,解得所以這組數(shù)據(jù)的方差故選A.考點:平均數(shù),方差點評:本題屬于基礎應用題,只需學生熟練掌握方差的計算公式,即可完成.2、C【解析】試題分析:由四邊形ABCD是平行四邊形,得到∠ABC=∠ADC=60°,∠BAD=120°,根據(jù)AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等邊三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正確;由于AC⊥AB,得到S?ABCD=AB?AC,故②正確,根據(jù)AB=BC,OB=BD,且BD>BC,得到AB<OB,故③錯誤;根據(jù)三角形的中位線定理得到OE=AB,于是得到OE=BC,故④正確.解:∵四邊形ABCD是平行四邊形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等邊三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正確;∵AC⊥AB,∴S?ABCD=AB?AC,故②正確,∵AB=BC,OB=BD,且BD>BC,∴AB<OB,故③錯誤;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正確.故選:C.3、D【解析】
根據(jù)中心對稱圖形的概念求解.【詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【點睛】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、A【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).詳解:11700000=1.17×1.
故選A.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、D【解析】
作輔助線,根據(jù)正方形對角線平分內(nèi)角的性質(zhì)可證明△AGH是等腰直角三角形,計算GH和BH的長,可解答.【詳解】解:過G作GH⊥x軸于H,
∵四邊形ABCD是正方形,
∴∠BAC=45°,
∵四邊形AEFG是正方形,AE=AB=2,
∴∠EAG=90°,AG=2,
∴∠HAG=45°,∵∠AHG=90°,
∴AH=GH=,
∴G(,2+),
故選:D.【點睛】本題考查了正方形的性質(zhì),等腰直角三角形的性質(zhì)和判定等知識,掌握等腰直角三角形各邊的關系是關鍵,理解坐標與圖形性質(zhì).6、B【解析】
根據(jù)最簡二次根式具備的條件:被開方數(shù)不含分母,被開方數(shù)中不含能開得盡方的因數(shù)或因式,逐一進行判斷即可得出答案.【詳解】A被開方數(shù)中含有能開得盡方的因數(shù)54,不是最簡二次根式,故錯誤;B符合最簡二次根式的條件,故正確;C被開方數(shù)中含有分母6,不是最簡二次根式,故錯誤;D被開方數(shù)中含有能開得盡方的因式,不是最簡二次根式,故錯誤;故選:B.【點睛】本題主要考查最簡二次根式,掌握最簡二次根式具備的條件是解題的關鍵.7、C【解析】分析:根據(jù)等腰三角形三線合一的性質(zhì)可得BD=CD,然后根據(jù)勾股定理求出AD的長即可.詳解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD==4.故選C.點睛:本題考查了等腰三角形三線合一的性質(zhì)和勾股定理,熟記性質(zhì)并準確識圖是解題的關鍵.8、A【解析】
解:B、C、D都是軸對稱圖形,即對稱軸如下紅色線;故選A.【點睛】此題考查軸對稱圖形和中心對稱圖形的概念.9、C【解析】
證明,得到,即是等腰三角形,同理是等腰三角形,根據(jù)題意求出,根據(jù)三角形中位線定理計算即可.【詳解】平分,,,,在和中,,,,是等腰三角形,同理是等腰三角形,點是中點,點是中點(三線合一),是的中位線,,,.故選.【點睛】本題考查的是三角形中位線定理、等腰三角形的性質(zhì),掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關鍵.10、C【解析】
求出不等式組的解集,即可確定出整數(shù)解.【詳解】,由①得:x>﹣,由②得:x≤3,∴不等式組的解集為﹣<x≤3,則整數(shù)解為0,1,2,3,共4個,故選C.【點睛】本題考查了一元一次不等式組的整數(shù)解,熟練掌握解一元一次不等式組的方法以及解集的確定方法是解題的關鍵.11、B【解析】試題分析:∵3>2,∴3※2=3-2,∵8<22,∴8※22=8+12=2(2考點:2.二次根式的混合運算;2.新定義.12、A【解析】分析:由菱形對角線的性質(zhì),相互垂直平分即可得出菱形的邊長,菱形四邊相等即可得出周長.詳解:由菱形對角線性質(zhì)知,AO=AC=3,BO=BD=4,且AO⊥BO,則AB==5,故這個菱形的周長L=4AB=1.故選A.點睛:本題考查了菱形面積的計算,考查了勾股定理在直角三角形中的運用,考查了菱形各邊長相等的性質(zhì),本題中根據(jù)勾股定理計算AB的長是解題的關鍵,難度一般.二、填空題(每題4分,共24分)13、x2+2x﹣3=0.【解析】
用因式分解的形式寫出方程,再化為一般形式即可【詳解】解:(x-1)(x+3)=0,
即x2+2x-3=0,
故答案為:x2+2x-3=0【點睛】本題考查一元二次方程,解題的關鍵是熟練運用一元二次方程的解法,本題屬于基礎題型.14、3【解析】
由題意可知:中間小正方形的邊長為:a-b,根據(jù)勾股定理以及題目給出的已知數(shù)據(jù)即可求出小正方形的邊長.【詳解】由題意可知:中間小正方形的邊長為:a-b,∵每一個直角三角形的面積為:ab=×8=4,∴4×ab+(a-b)2=25,∴(a?b)2=25-16=9,∴a-b=3,故答案為3.【點睛】本題考查了勾股定理的證明,熟練掌握該知識點是本題解題的關鍵.15、4.4×1【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:44000000=4.4×1,故答案為4.4×1.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.16、±40【解析】
利用完全平方公式判斷即可確定出k的值.【詳解】解:∵100x2-kxy+4y2是一個完全平方式,
∴k=±40,
故答案為:±40【點睛】此題考查了完全平方式,熟練掌握完全平方公式是解本題的關鍵.17、1【解析】【分析】根據(jù)三角形的中位線定理進行求解即可得.【詳解】∵D,E分別是BC,AC的中點,∴DE是△ABC的中位線,∴DE=AB==1,故答案為:1.【點睛】本題考查了三角形中位線定理,熟記定理的內(nèi)容是解題的關鍵.18、1【解析】
根據(jù)眾數(shù)的概念即可得到結(jié)果.【詳解】解:在這組數(shù)據(jù)中1出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則這組數(shù)據(jù)的眾數(shù)是1;
故答案為:1.【點睛】此題考查了眾數(shù)的定義;熟記眾數(shù)的定義是解決問題的關鍵.三、解答題(共78分)19、(1)BC=5;(2);(3)的長為或3或.【解析】
(1)根據(jù)垂直平分線性質(zhì)可知,設,,在中用勾股定理求出,即可解答;(2)聯(lián)結(jié),,在中,,在中,,消去二次項即可得到與的函數(shù)關系式;根據(jù)點是邊上的一動點結(jié)合(1)即可得出的定義域;(3)分三種情況討論,分別畫出圖形,根據(jù)相等的邊用勾股定理列方程求解即可.【詳解】解:(1)∵梯形中,,,,∴,∵是線段的垂直平分線,∴,在中,,又∵,,設,,,∴,∴.(2)聯(lián)結(jié),,∵是線段的垂直平分線,∴∵,,∴在中,在中,∴∴(3)在中,,,∴,當是等腰三角形時①∵∴∵∴∴②取中點,聯(lián)結(jié)∵為的中點∴為梯形中位線∴∵∴為中點,∴此時與重合∴③聯(lián)結(jié)并延長交延長線于點此時.∴,,∴,∴在中,,∵∴解得,(不合題意含去)∴綜上所述,當是等腰三角形時,的長為或3或【點睛】本題綜合考查了矩形的性質(zhì)、勾股定理解三角形、等腰三角形性質(zhì)和判定、全等三角形性質(zhì)和判定,靈活運用勾股定理求線段長是解題的關鍵.20、(1)見解析;(2)【解析】分析:(1)證明四邊形OCED是矩形即可;(2)在Rt△ACE中,求出AC,CE的長,則可用勾股定理求AE.詳解:(1)證明:∵四邊形ABCD是菱形,DE=AC,∴AC⊥BD,DE=OC.∵DE∥AC,∴四邊形OCED是平行四邊形.∵AC⊥BD,四邊形OCED是平行四邊形,∴四邊形OCED是矩形,∴OE=CD.(2)證明:∵菱形ABCD的邊長為6,∴AB=BC=CD=AD=6,BD⊥AC,AO=CO=AC.∵∠ABC=60°,AB=BC,∴△ABC是等邊三角形,∴AC=AB=6.∵△AOD中BD⊥AC,AD=6,AO=3,∴OD=.∵四邊形OCED是矩形,∴CE=OD=.∵在Rt△ACE中,AC=6,CE=,∴AE=.點睛:本題考查了菱形的性質(zhì),矩形的判定和性質(zhì)及勾股定理,菱形中出現(xiàn)了60°角要求線段的長度時,一般要考慮兩點:①圖形中會有等邊三角形,②以60°角的某一邊為直角邊的直角三角形,再利用勾股定理求解.21、(1)1,88.5;(2)見解析;(3)乙,乙的中位數(shù)是85,87>85;(4)140【解析】
(1)根據(jù)頻數(shù)分布表和頻數(shù)分布直方圖的信息列式計算即可得到a的值,根據(jù)中位數(shù)的定義求解可得n的值;
(2)根據(jù)題意補全頻數(shù)分布直方圖即可;
(3)根據(jù)甲這名學生的成績?yōu)?7分,小于甲校樣本數(shù)據(jù)的中位數(shù)88.5分,大于乙校樣本數(shù)據(jù)的中位數(shù)85分可得;
(4)利用樣本估計總體思想求解可得.【詳解】(1)a=,由頻數(shù)分布表和頻數(shù)分布直方圖中的信息可知,排在中間的兩個數(shù)是88和89,∴,
故答案為:1,88.5;
(2)∵b=20-1-3-8-6=2,
∴補全圖1甲校學生樣本成績頻數(shù)分布直方圖如圖所示;(3)在此次測試中,某學生的成績是87分,在他所屬學校排在前10名,由表中數(shù)據(jù)可知該學生是乙校的學生,
理由:乙的中位數(shù)是85,87>85,
故答案為:乙,乙的中位數(shù)是85,87>85;(4),∴成績優(yōu)秀的學生人數(shù)為140人,故答案為:140人.【點睛】此題考查頻數(shù)分布表,頻數(shù)分布直方圖,中位數(shù)的計算方法,利用部分估計總體的方法,正確理解題意是解題的關鍵.22、(1)50;(2)見解析;(3)108°;)(4)160.【解析】
(1)根據(jù)乘車的人數(shù)是25,所占的百分比是50%,即可求得總?cè)藬?shù);(2)利用總?cè)藬?shù)乘以步行對應的百分比即可求得步行的人數(shù),從而補全統(tǒng)計圖;(3)根據(jù)三部分百分比的和是1求得“騎車”對應的百分比,再乘以360°可得答案;(4)利用總?cè)藬?shù)800乘以步行對應的百分比即可.【詳解】解:(1)該班總?cè)藬?shù)是:25÷50%=50(人),故答案為:50;(2)步行的人數(shù)是:50×20%=10(人).;(3)“騎車”部分所對應的百分比是:1﹣50%﹣20%=30%,所以扇形圖中表示騎車部分所占扇形的圓心角為360°×30%=108°,故答案為:108°;(4)估計該年級步行上學的學生人數(shù)是:800×20%=160(人).【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及樣本估計總計.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.23、(1)見解析如圖(1);(2)三邊分別為,3,2是格點三角形.圖見解析.【解析】
(1)根據(jù)勾股定理畫出圖形即可.(2)先將等式變形,根據(jù)算術平方根和平方的非負性可得m和n的值,計算d的值,畫出格點三角形即可.【詳解】(1)如圖(1)所示:(2)∵,∴,解得:m=3,n=2,∴三邊長為3,2,或,3,2,如圖(2)所示:,3,2是格點三角形.【點睛】本題考查的是勾股定理,格點三角形、算術平方根和平方的非負性,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.24、.【解析】
根據(jù)題目中的數(shù)據(jù)可以求得該三角形的周長【詳解】解:∵這個三角形的三邊長分別為:,∴這個三角形的周長是:=.【點睛】本題考查二次根式的性質(zhì)與化簡,解答本題的關鍵是明確二次根式的意義.25、(1)見解析;(2)四邊形MBFE與四邊形DNEG,四邊形MBCG與四邊形DNFC,四邊形ABFE與四邊形ADGE,四邊形ABFN與四邊形ADGM.【解析】
(1)由MG∥AD,NF∥AB,可證得四邊形AMEN是平行四邊形,又由四邊形ABCD是菱形,BM=DN,可得AM=AN,即可證得四邊形AMEN是菱形;
(2)根據(jù)四邊形AMEN是菱形得到ME=NE,S△AEM=S△AEN,作出輔助線,證明△MHB≌△NKD(AAS),得到MH=NK,從而得到S四邊形MBFE=S四邊形DNEG,繼而求得答案.【詳解】(1)證明:∵MG∥AD,NF∥AB,
∴四邊形AMEN是平行四邊形,
∵四邊形ABCD是菱形,
∴AB=AD,
∵BM=DN,
∴AB?BM=AD?DN,
∴AM=AN,
∴四邊形AMEN是菱形;
(2)解:∵四邊形AMEN是菱形,∴ME=NE,∴S△AEM=S△AEN,如圖所示,過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 的房地產(chǎn)項目執(zhí)行監(jiān)控工具
- 彩妝課堂 從零開始的彩妝基礎知識與技巧
- 環(huán)境災害應急響應預案培訓評估重點基礎知識點歸納
- 環(huán)境災害應急法律法規(guī)執(zhí)行法規(guī)重點基礎知識點歸納
- 2021-2022學年山東省濟寧市兗州區(qū)人教PEP版六年級下冊期末考試英語試卷(原卷版)
- 住宅小區(qū)項目的BIM實施案例
- 脊柱手術演示 脊柱疾病的治療重要性講解
- 口味創(chuàng)新 KFC、德克士等炸雞店的新品
- 應對不同皮膚類型的妝容技巧
- 駐村扶貧心理耗竭預防
- 機械制造業(yè)智能化工廠規(guī)劃與建設方案
- 《云南教育強省建設規(guī)劃綱要(2024-2035年)》解讀培訓
- 人教版七年級數(shù)學上冊練習題
- 《高效客戶關系管理培訓課件》
- 滬教版(五四學制)(2024)六年級下冊單詞表+默寫單
- 替爾泊肽在肥胖人群中的應用
- 醫(yī)療行業(yè)項目進駐流程解析
- 醫(yī)療信息保密制度
- 2025國培研修計劃
- 信息安全風險評估報告和風險處理計劃
- 三年級下冊兩位數(shù)乘兩位數(shù)筆算乘法題100道
評論
0/150
提交評論