山東省臨沂市蘭陵縣市級名校2025屆初三質量普查調研考試數學試題試卷含解析_第1頁
山東省臨沂市蘭陵縣市級名校2025屆初三質量普查調研考試數學試題試卷含解析_第2頁
山東省臨沂市蘭陵縣市級名校2025屆初三質量普查調研考試數學試題試卷含解析_第3頁
山東省臨沂市蘭陵縣市級名校2025屆初三質量普查調研考試數學試題試卷含解析_第4頁
山東省臨沂市蘭陵縣市級名校2025屆初三質量普查調研考試數學試題試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省臨沂市蘭陵縣市級名校2025屆初三質量普查調研考試數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.在實數﹣,0.21,,,,0.20202中,無理數的個數為()A.1 B.2 C.3 D.42.已知二次函數的圖象與軸交于點、,且,與軸的正半軸的交點在的下方.下列結論:①;②;③;④.其中正確結論的個數是()個.A.4個 B.3個 C.2個 D.1個3.如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°4.下列運算正確的是()A.5a+2b=5(a+b) B.a+a2=a3C.2a3?3a2=6a5 D.(a3)2=a55.如圖,從邊長為a的正方形中去掉一個邊長為b的小正方形,然后將剩余部分剪后拼成一個長方形,上述操作能驗證的等式是()A. B.C. D.6.從1、2、3、4、5、6這六個數中隨機取出一個數,取出的數是3的倍數的概率是()A. B. C. D.7.a、b是實數,點A(2,a)、B(3,b)在反比例函數y=﹣的圖象上,則()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a8.如圖,在矩形ABCD中,AB=2,AD=3,點E是BC邊上靠近點B的三等分點,動點P從點A出發,沿路徑A→D→C→E運動,則△APE的面積y與點P經過的路徑長x之間的函數關系用圖象表示大致是()A. B. C. D.9.如圖,在4×4的正方形網格中,每個小正方形的邊長都為1,△AOB的三個頂點都在格點上,現將△AOB繞點O逆時針旋轉90°后得到對應的△COD,則點A經過的路徑弧AC的長為()A. B.π C.2π D.3π10.對于代數式ax2+bx+c(a≠0),下列說法正確的是()①如果存在兩個實數p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個實數m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④二、填空題(本大題共6個小題,每小題3分,共18分)11.小明用一個半徑為30cm且圓心角為240°的扇形紙片做成一個圓錐形紙帽(粘合部分忽略不計),那么這個圓錐形紙帽的底面半徑為_____cm.12.如圖,有一塊邊長為4的正方形塑料模板ABCD,將一塊足夠大的直角三角板的直角頂點落在A點,兩條直角邊分別與CD交于點F,與CB延長線交于點E.則四邊形AECF的面積是.13.在我國著名的數學書九章算術中曾記載這樣一個數學問題:“今有共買羊,人出五,不足四十五;人出七,不足三,問人數、羊價各幾何?”其大意是:今有人合伙買羊,若每人出5錢,還差45錢;若每人出7錢,還差3錢,問合伙人數、羊價各是多少?設羊價為x錢,則可列關于x的方程為______.14.如圖,點D、E、F分別位于△ABC的三邊上,滿足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.15.圓錐的底面半徑是4cm,母線長是5cm,則圓錐的側面積等于_____cm1.16.將多項式因式分解的結果是.三、解答題(共8題,共72分)17.(8分)如圖,正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,連接AF,求∠OFA的度數18.(8分)漳州市某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優秀,并繪制成如下兩幅統計圖(不完整).請你根據圖中所給的信息解答下列問題:請將以上兩幅統計圖補充完整;若“一般”和“優秀”均被視為達標成績,則該校被抽取的學生中有_▲人達標;若該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?19.(8分)已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大小;(2)如圖②,點P在OA的延長線上,若∠OBQ=65°,求∠AQE的大小.20.(8分)先化簡,后求值:a2?a4﹣a8÷a2+(a3)2,其中a=﹣1.21.(8分)如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.(1)求證:AB是⊙O的切線;(2)若AC=8,tan∠BAC=,求⊙O的半徑.22.(10分)在一節數學活動課上,王老師將本班學生身高數據(精確到1厘米)出示給大家,要求同學們各自獨立繪制一幅頻數分布直方圖,甲繪制的如圖①所示,乙繪制的如圖②所示,經王老師批改,甲繪制的圖是正確的,乙在數據整理與繪圖過程中均有個別錯誤.寫出乙同學在數據整理或繪圖過程中的錯誤(寫出一個即可);甲同學在數據整理后若用扇形統計圖表示,則159.5﹣164.5這一部分所對應的扇形圓心角的度數為;該班學生的身高數據的中位數是;假設身高在169.5﹣174.5范圍的5名同學中,有2名女同學,班主任老師想在這5名同學中選出2名同學作為本班的正、副旗手,那么恰好選中一名男同學和一名女同學當正,副旗手的概率是多少?23.(12分)如圖,有長為14m的籬笆,現一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬AB為xm,面積為Sm1.求S與x的函數關系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當AB的長是多少米時,圍成的花圃的面積最大?24.如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.(1)判斷直線l與⊙O的位置關系,并說明理由;(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;(3)在(2)的條件下,若DE=4,DF=3,求AF的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】在實數﹣,0.21,,,,0.20202中,根據無理數的定義可得其中無理數有﹣,,,共三個.故選C.2、B【解析】分析:根據已知畫出圖象,把x=?2代入得:4a?2b+c=0,把x=?1代入得:y=a?b+c>0,根據不等式的兩邊都乘以a(a<0)得:c>?2a,由4a?2b+c=0得而0<c<2,得到即可求出2a?b+1>0.詳解:根據二次函數y=ax2+bx+c的圖象與x軸交于點(?2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方,畫出圖象為:如圖把x=?2代入得:4a?2b+c=0,∴①正確;把x=?1代入得:y=a?b+c>0,如圖A點,∴②錯誤;∵(?2,0)、(x1,0),且1<x1,∴取符合條件1<x1<2的任何一個x1,?2?x1<?2,∴由一元二次方程根與系數的關系知∴不等式的兩邊都乘以a(a<0)得:c>?2a,∴2a+c>0,∴③正確;④由4a?2b+c=0得而0<c<2,∴∴?1<2a?b<0∴2a?b+1>0,∴④正確.所以①③④三項正確.故選B.點睛:屬于二次函數綜合題,考查二次函數圖象與系數的關系,二次函數圖象上點的坐標特征,拋物線與軸的交點,屬于常考題型.3、B【解析】

延長AC交DE于點F,根據所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長AC交DE于點F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內錯角相等,兩直線平行;③同旁內角互補,兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內,垂直于同一直線的兩條直線互相平行.4、C【解析】

直接利用合并同類項法則以及單項式乘以單項式、冪的乘方運算法則分別化簡得出答案.【詳解】A、5a+2b,無法計算,故此選項錯誤;B、a+a2,無法計算,故此選項錯誤;C、2a3?3a2=6a5,故此選項正確;D、(a3)2=a6,故此選項錯誤.故選C.此題主要考查了合并同類項以及單項式乘以單項式、冪的乘方運算,正確掌握運算法則是解題關鍵.5、A【解析】

由圖形可以知道,由大正方形的面積-小正方形的面積=矩形的面積,進而可以證明平方差公式.【詳解】解:大正方形的面積-小正方形的面積=,

矩形的面積=,

故,

故選:A.本題主要考查平方差公式的幾何意義,用兩種方法表示陰影部分的面積是解題的關鍵.6、B【解析】考點:概率公式.專題:計算題.分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.解答:解:從1、2、3、4、5、6這六個數中隨機取出一個數,共有6種情況,取出的數是3的倍數的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)="m"/n.7、A【解析】解:∵,∴反比例函數的圖象位于第二、四象限,在每個象限內,y隨x的增大而增大,∵點A(2,a)、B(3,b)在反比例函數的圖象上,∴a<b<0,故選A.8、B【解析】

由題意可知,當時,;當時,;當時,.∵時,;時,.∴結合函數解析式,可知選項B正確.考點:1.動點問題的函數圖象;2.三角形的面積.9、A【解析】

根據旋轉的性質和弧長公式解答即可.【詳解】解:∵將△AOB繞點O逆時針旋轉90°后得到對應的△COD,∴∠AOC=90°,∵OC=3,∴點A經過的路徑弧AC的長==,故選:A.此題考查弧長計算,關鍵是根據旋轉的性質和弧長公式解答.10、A【解析】設(1)如果存在兩個實數p≠q,使得ap2+bp+c=aq2+bq+c,則說明在中,當x=p和x=q時的y值相等,但并不能說明此時p、q是與x軸交點的橫坐標,故①中結論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說明在中當x=m、n、s時,對應的y值相等,因此m、n、s中至少有兩個數是相等的,故②錯誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個不同的交點,所以此時一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+c,故③在結論正確;(4)如果ac>0,則b2-4ac的值的正負無法確定,此時的圖象與x軸的交點情況無法確定,所以④中結論不一定成立.綜上所述,四種說法中正確的是③.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、20【解析】

先求出半徑為30cm且圓心角為240°的扇形紙片的弧長,再利用底面周長=展開圖的弧長可得.【詳解】=40π.

設這個圓錐形紙帽的底面半徑為r.

根據題意,得40π=2πr,

解得r=20cm.故答案是:20.解答本題的關鍵是有確定底面周長=展開圖的弧長這個等量關系,然后由扇形的弧長公式和圓的周長公式求值.12、1【解析】

∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=1.13、【解析】

設羊價為x錢,根據題意可得合伙的人數為或,由合伙人數不變可得方程.【詳解】設羊價為x錢,根據題意可得方程:,故答案為:.本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.14、3:2【解析】因為DE∥BC,所以,因為EF∥AB,所以,所以,故答案為:3:2.15、10π【解析】

解:根據圓錐的側面積公式可得這個圓錐的側面積=?1π?4?5=10π(cm1).故答案為:10π本題考查圓錐的計算.16、m(m+n)(m﹣n).【解析】試題分析:原式==m(m+n)(m﹣n).故答案為:m(m+n)(m﹣n).考點:提公因式法與公式法的綜合運用.三、解答題(共8題,共72分)17、25°【解析】

先利用正方形的性質得OA=OC,∠AOC=90°,再根據旋轉的性質得OC=OF,∠COF=40°,則OA=OF,根據等腰三角形的性質得∠OAF=∠OFA,然后根據三角形的內角和定理計算∠OFA的度數.【詳解】解:∵四邊形OABC為正方形,∴OA=OC,∠AOC=90°,∵正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,∴OC=OF,∠COF=40°,∴OA=OF,∴∠OAF=∠OFA,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=(180°-130°)=25°.故答案為25°.本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了正方形的性質.18、(1)見解析;(2)1;(3)估計全校達標的學生有10人【解析】

(1)成績一般的學生占的百分比=1-成績優秀的百分比-成績不合格的百分比,測試的學生總數=不合格的人數÷不合格人數的百分比,繼而求出成績優秀的人數.(2)將成績一般和優秀的人數相加即可;(3)該校學生文明禮儀知識測試中成績達標的人數=1200×成績達標的學生所占的百分比.【詳解】解:(1)成績一般的學生占的百分比=1﹣20%﹣50%=30%,測試的學生總數=24÷20%=120人,成績優秀的人數=120×50%=60人,所補充圖形如下所示:(2)該校被抽取的學生中達標的人數=36+60=1.(3)1200×(50%+30%)=10(人).答:估計全校達標的學生有10人.19、(1)30°;(2)20°;【解析】

(1)利用圓切線的性質求解;(2)連接OQ,利用圓的切線性質及角之間的關系求解。【詳解】(1)如圖①中,連接OQ.∵EQ是切線,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(2)如圖②中,連接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切線,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.此題主要考查圓的切線的性質及圓中集合問題的綜合運等.20、1【解析】

先進行同底數冪的乘除以及冪的乘方運算,再合并同類項得到化簡后的式子,將a的值代入化簡后的式子計算即可.【詳解】原式=a6﹣a6+a6=a6,當a=﹣1時,原式=1.本題主要考查同底數冪的乘除以及冪的乘方運算法則.21、(1)見解析;(2).【解析】分析:(1)連結OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據菱形的性質得∠1=∠2,所以∠2+∠OAP=90°,然后根據切線的判定定理得到直線AB與⊙O相切;(2)連結BD,交AC于點F,根據菱形的性質得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據勾股定理得到AD==2,求得AE=,設⊙O的半徑為R,則OE=R﹣,OA=R,根據勾股定理列方程即可得到結論.詳解:(1)連結OP、OA,OP交AD于E,如圖,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四邊形ABCD為菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直線AB與⊙O相切;(2)連結BD,交AC于點F,如圖,∵四邊形ABCD為菱形,∴DB與AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.設⊙O的半徑為R,則OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半徑為.點睛:本題考查了切線的判定定理:經過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的性質和銳角三角函數以及勾股定理.22、(1)乙在整理數據時漏了一個數據,它在169.5﹣﹣174.5內;(答案不唯一);(2)120°;(3)160或1;(4).【解析】

(1)對比圖①與圖②,找出圖②中與圖①不相同的地方;(2)則159.5﹣164.5這一部分的人數占全班人數的比乘以360°;(3)身高排序為第30和第31的兩名同學的身高的平均數;(4)用樹狀圖法求概率.【詳解】解:(1)對比甲乙的直方圖可得:乙在整理數據時漏了一個數據,它在169.5﹣﹣174.5內;(答案不唯一)(2)根據頻數分布直方圖中每一組內的頻數總和等于總數據個數;將甲的數據相加可得10+15+20+10+5=60;由題意可知159.5﹣164.5這一部分所對應的人數為20人,所以這一部分所對應的扇形圓心角的度數為20÷60×360=120°,故答案為120°;(3)根據中位數的求法,將甲的數據從小到大依次排列,可得第30與31名的數據在第3組,由乙的數據知小于162的數據有36個,則這兩個只能是160或1.故答案為160或1;(4)列樹狀圖得:P(一男一女)==.23、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解析】

(1)設花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論