2025屆浙江省桐鄉市實驗中學初三下入學測試數學試題含解析_第1頁
2025屆浙江省桐鄉市實驗中學初三下入學測試數學試題含解析_第2頁
2025屆浙江省桐鄉市實驗中學初三下入學測試數學試題含解析_第3頁
2025屆浙江省桐鄉市實驗中學初三下入學測試數學試題含解析_第4頁
2025屆浙江省桐鄉市實驗中學初三下入學測試數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆浙江省桐鄉市實驗中學初三下入學測試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列圖標中,是中心對稱圖形的是()A. B.C. D.2.下列運算正確的是()A.a4+a2=a4 B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2 D.b6÷b2=b33.有一個數用科學記數法表示為5.2×105,則這個數是()A.520000 B. C.52000 D.52000004.如圖,一次函數y1=x與二次函數y2=ax2+bx+c圖象相交于P、Q兩點,則函數y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.5.如圖,已知,那么下列結論正確的是()A. B. C. D.6.若關于x的不等式組恰有3個整數解,則字母a的取值范圍是()A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣17.“保護水資源,節約用水”應成為每個公民的自覺行為.下表是某個小區隨機抽查到的10戶家庭的月用水情況,則下列關于這10戶家庭的月用水量說法錯誤的是()月用水量(噸)4569戶數(戶)3421A.中位數是5噸 B.眾數是5噸 C.極差是3噸 D.平均數是5.3噸8.已知方程組,那么x+y的值()A.-1 B.1 C.0 D.59.下列方程有實數根的是()A. B.C.x+2x?1=0 D.10.已知一次函數y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.函數自變量x的取值范圍是_____.12.因式分解:9a3b﹣ab=_____.13.一元二次方程2x2﹣3x﹣4=0根的判別式的值等于_____.14.方程的解是__________.15.關于x的一元二次方程x2+bx+c=0的兩根為x1=1,x2=2,則x2+bx+c分解因式的結果為_____.16.和平中學自行車停車棚頂部的剖面如圖所示,已知AB=16m,半徑OA=10m,高度CD為____m.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:,其中,.18.(8分)先化簡代數式:,再代入一個你喜歡的數求值.19.(8分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過計算,判斷AD2與AC?CD的大小關系;(2)求∠ABD的度數.20.(8分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.21.(8分)為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)22.(10分)列方程或方程組解應用題:為響應市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?23.(12分)已知拋物線y=ax2﹣bx.若此拋物線與直線y=x只有一個公共點,且向右平移1個單位長度后,剛好過點(3,1).①求此拋物線的解析式;②以y軸上的點P(1,n)為中心,作該拋物線關于點P對稱的拋物線y',若這兩條拋物線有公共點,求n的取值范圍;若a>1,將此拋物線向上平移c個單位(c>1),當x=c時,y=1;當1<x<c時,y>1.試比較ac與1的大小,并說明理由.24.如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉,記旋轉角為θ.(1)問題發現①當θ=0°時,=;②當θ=180°時,=.(2)拓展探究試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉過程中,BE的最大值為;②當△ADE旋轉至B、D、E三點共線時,線段CD的長為.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.2、B【解析】分析:根據合并同類項,積的乘方,完全平方公式,同底數冪相除的性質,逐一計算判斷即可.詳解:根據同類項的定義,可知a4與a2不是同類項,不能計算,故不正確;根據積的乘方,等于個個因式分別乘方,可得(x2y)3=x6y3,故正確;根據完全平方公式,可得(m-n)2=m2-2mn+n2,故不正確;根據同底數冪的除法,可知b6÷b2=b4,不正確.故選B.點睛:此題主要考查了合并同類項,積的乘方,完全平方公式,同底數冪相除的性質,熟記并靈活運用是解題關鍵.3、A【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】5.2×105=520000,故選A.此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.4、A【解析】

由一次函數y1=x與二次函數y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b-1)x+c=0有兩個不相等的根,進而得出函數y=ax2+(b-1)x+c與x軸有兩個交點,根據方程根與系數的關系得出函數y=ax2+(b-1)x+c的對稱軸x=->0,即可進行判斷.【詳解】點P在拋物線上,設點P(x,ax2+bx+c),又因點P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數y=x與二次函數y=ax2+bx+c交于第一象限的P、Q兩點,∴方程ax2+(b-1)x+c=0有兩個正實數根.∴函數y=ax2+(b-1)x+c與x軸有兩個交點,又∵->0,a>0∴-=-+>0∴函數y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.5、A【解析】

已知AB∥CD∥EF,根據平行線分線段成比例定理,對各項進行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.本題考查平行線分線段成比例定理,找準對應關系,避免錯選其他答案.6、B【解析】

根據“同大取大,同小取小,大小小大取中間,大大小小無解”即可求出字母a的取值范圍.【詳解】解:∵x的不等式組恰有3個整數解,∴整數解為1,0,-1,∴-2≤a<-1.故選B.本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.7、C【解析】

根據中位數、眾數、極差和平均數的概念,對選項一一分析,即可選擇正確答案.【詳解】解:A、中位數=(5+5)÷2=5(噸),正確,故選項錯誤;B、數據5噸出現4次,次數最多,所以5噸是眾數,正確,故選項錯誤;C、極差為9﹣4=5(噸),錯誤,故選項正確;D、平均數=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項錯誤.故選:C.此題主要考查了平均數、中位數、眾數和極差的概念.要掌握這些基本概念才能熟練解題.8、D【解析】

解:,①+②得:3(x+y)=15,則x+y=5,故選D9、C【解析】分析:根據方程解的定義,一一判斷即可解決問題;詳解:A.∵x4>0,∴x4+2=0無解;故本選項不符合題意;B.∵≥0,∴=﹣1無解,故本選項不符合題意;C.∵x2+2x﹣1=0,△=8=4=12>0,方程有實數根,故本選項符合題意;D.解分式方程=,可得x=1,經檢驗x=1是分式方程的增根,故本選項不符合題意.故選C.點睛:本題考查了無理方程、根的判別式、高次方程、分式方程等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.10、C【解析】

根據題意得出旋轉后的函數解析式為y=-x-1,然后根據解析式求得與x軸的交點坐標,結合點的坐標即可得出結論.【詳解】∵一次函數y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),∴設旋轉后的函數解析式為y=﹣x﹣1,在一次函數y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數y=﹣x+2與x軸交點為(4,1).一次函數y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數y=﹣x﹣1與x軸交點為(﹣2,1).∴m==1,故選:C.本題考查了一次函數圖象與幾何變換,解題的關鍵是求出旋轉后的函數解析式.本題屬于基礎題,難度不大.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≥1且x≠1【解析】

根據分式成立的條件,二次根式成立的條件列不等式組,從而求解.【詳解】解:根據題意得:,解得x≥1,且x≠1,即:自變量x取值范圍是x≥1且x≠1.故答案為x≥1且x≠1.本題考查函數自變量的取值范圍;分式有意義的條件;二次根式有意義的條件.12、ab(3a+1)(3a-1).【解析】試題分析:原式提取公因式后,利用平方差公式分解即可.試題解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考點:提公因式法與公式法的綜合運用.13、41【解析】

已知一元二次方程的根判別式為△=b2﹣4ac,代入計算即可求解.【詳解】依題意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判別式為:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案為:41本題考查了一元二次方程的根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判別式為△=b2﹣4ac是解決問題的關鍵.14、.【解析】

根據解分式方程的步驟依次計算可得.【詳解】解:去分母,得:,解得:,當時,,所以是原分式方程的解,故答案為:.本題主要考查解分式方程,解題的關鍵是熟練掌握解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結論.15、(x﹣1)(x﹣2)【解析】

根據方程的兩根,可以將方程化為:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,對比原方程即可得到所求代數式的因式分解的結果.【詳解】解:已知方程的兩根為:x1=1,x2=2,可得:(x﹣1)(x﹣2)=0,∴x2+bx+c=(x﹣1)(x﹣2),故答案為:(x﹣1)(x﹣2).一元二次方程ax2+bx+c=0(a≠0,a、b、c是常數),若方程的兩根是x1和x2,則ax2+bx+c=a(x﹣x1)(x﹣x2)16、1.【解析】

由CD⊥AB,根據垂徑定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理計算出OD,則通過CD=OC?OD求出CD.【詳解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半徑OA=10m,∴OD==6,∴CD=OC﹣OD=10﹣6=1(m).故答案為1.本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的弧.也考查了切線的性質定理以及勾股定理.三、解答題(共8題,共72分)17、9【解析】

根據完全平方公式、平方差公式、單項式乘多項式可以化簡題目中的式子,然后將x、y的值代入化簡后的式子即可解答本題.【詳解】當,時,原式本題考查整式的化簡求值,解答本題的關鍵是明確整式化簡求值的方法.18、【解析】

先根據分式的運算法則進行化簡,再代入使分式有意義的值計算.【詳解】解:原式.使原分式有意義的值可取2,當時,原式.考核知識點:分式的化簡求值.掌握分式的運算法則是關鍵.19、(1)AD2=AC?CD.(2)36°.【解析】試題分析:(1)通過計算得到AD2=(2)由AD2=AC?CD,得到BC2設∠A=∠ABD=x,則∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形內角和等于180°,解得:x=36°,從而得到結論.試題解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC?CD,∴BC2設∠A=∠ABD=x,則∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考點:相似三角形的判定與性質.20、(1);(2).【解析】

(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據概率的意義解答即可;(2)畫出樹狀圖,然后根據概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.21、水壩原來的高度為12米【解析】試題分析:設BC=x米,用x表示出AB的長,利用坡度的定義得到BD=BE,進而列出x的方程,求出x的值即可.試題解析:設BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水壩原來的高度為12米..考點:解直角三角形的應用,坡度.22、15千米.【解析】

首先設小張用騎公共自行車方式上班平均每小時行駛x千米,根據題意可得等量關系:騎公共自行車方式所用的時間=自駕車方式所用的時間×4,根據等量關系,列出方程,再解即可.【詳解】:解:設小張用騎公共自行車方式上班平均每小時行駛x千米,根據題意列方程得:=4×解得:x=15,經檢驗x=15是原方程的解且符合實際意義.答:小張用騎公共自行車方式上班平均每小時行駛15千米.23、(1)①;②n≤1;(2)ac≤1,見解析.【解析】

(1)①△=1求解b=1,將點(3,1)代入平移后解析式,即可;②頂點為(1,)關于P(1,n)對稱點的坐標是(﹣1,2n﹣),關于點P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n,聯立方程組即可求n的范圍;(2)將點(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,當1<x<c時,y>1.≥c,b≥2ac,ac+1≥2ac,ac≥1;【詳解】解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,△=(b+1)2=1,b=﹣1,平移后的拋物線y=a(x﹣1)2﹣b(x﹣1)過點(3,1),∴4a﹣2b=1,∴a=﹣,b=﹣1,原拋物線:y=﹣x2+x,②其頂點為(1,)關于P(1,n)對稱點的坐標是(﹣1,2n﹣),∴關于點P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n.由得:x2+2n=1有解,所以n≤1.(2)由題知:a>1,將此拋物線y=ax2﹣bx向上平移c個單位(c>1),其解析式為:y=ax2﹣bx+c過點(c,1),∴ac2﹣bc+c=1(c>1),∴ac﹣b+1=1,b=ac+1,且當x=1時,y=c,對稱軸:x=,拋物線開口向上,畫草圖如右所示.由題知,當1<x<c時,y>1.∴≥c,b≥2ac,∴ac+1≥2ac,ac≤1;本題考查二次函數的圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論