2025年云南省臨滄市達(dá)標(biāo)名校初三下-第二次聯(lián)考數(shù)學(xué)試題試卷含解析_第1頁
2025年云南省臨滄市達(dá)標(biāo)名校初三下-第二次聯(lián)考數(shù)學(xué)試題試卷含解析_第2頁
2025年云南省臨滄市達(dá)標(biāo)名校初三下-第二次聯(lián)考數(shù)學(xué)試題試卷含解析_第3頁
2025年云南省臨滄市達(dá)標(biāo)名校初三下-第二次聯(lián)考數(shù)學(xué)試題試卷含解析_第4頁
2025年云南省臨滄市達(dá)標(biāo)名校初三下-第二次聯(lián)考數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025年云南省臨滄市達(dá)標(biāo)名校初三下-第二次聯(lián)考數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=2x上,第二象限的點(diǎn)B在反比例函數(shù)y=kxA.﹣22 B.4 C.﹣4 D.222.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣33.如圖,在中,E為邊CD上一點(diǎn),將沿AE折疊至處,與CE交于點(diǎn)F,若,,則的大小為()A.20° B.30° C.36° D.40°4.如圖,直線y=3x+6與x,y軸分別交于點(diǎn)A,B,以O(shè)B為底邊在y軸右側(cè)作等腰△OBC,將點(diǎn)C向左平移5個(gè)單位,使其對(duì)應(yīng)點(diǎn)C′恰好落在直線AB上,則點(diǎn)C的坐標(biāo)為()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)5.如圖,在Rt△ABC中,∠C=90°,以頂點(diǎn)A為圓心,適當(dāng)長為半徑畫弧,分別交AC,AB于點(diǎn)M、N,再分別以點(diǎn)M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,作射線AP交邊BC于點(diǎn)D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.726.如圖,在平行四邊形ABCD中,F(xiàn)是邊AD上的一點(diǎn),射線CF和BA的延長線交于點(diǎn)E,如果,那么的值是()A. B. C. D.7.若3x>﹣3y,則下列不等式中一定成立的是()A. B. C. D.8.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點(diǎn),點(diǎn)C在第一象限,AC⊥AB,且AC=AB,則點(diǎn)C的坐標(biāo)為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)9.如圖,P為⊙O外一點(diǎn),PA、PB分別切⊙O于點(diǎn)A、B,CD切⊙O于點(diǎn)E,分別交PA、PB于點(diǎn)C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.1010.如圖,一束平行太陽光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數(shù)是()A.26°. B.44°. C.46°. D.72°11.若ab<0,則正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標(biāo)系中的大致圖象可能是()A. B. C. D.12.把一個(gè)多邊形紙片沿一條直線截下一個(gè)三角形后,變成一個(gè)18邊形,則原多邊形紙片的邊數(shù)不可能是()A.16 B.17 C.18 D.19二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.不等式>4﹣x的解集為_____.14.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半徑為1,點(diǎn)P是斜邊AB上的點(diǎn),過點(diǎn)P作⊙C的一條切線PQ(點(diǎn)Q是切點(diǎn)),則線段PQ的最小值為_____.15.將多項(xiàng)式因式分解的結(jié)果是.16.如圖,在△ABC中,點(diǎn)E,F(xiàn)分別是AC,BC的中點(diǎn),若S四邊形ABFE=9,則S三角形EFC=________.17.如圖,AE是正八邊形ABCDEFGH的一條對(duì)角線,則∠BAE=°.18.某次數(shù)學(xué)測試,某班一個(gè)學(xué)習(xí)小組的六位同學(xué)的成績?nèi)缦拢?4、75、75、92、86、99,則這六位同學(xué)成績的中位數(shù)是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)周末,甲、乙兩名大學(xué)生騎自行車去距學(xué)校6000米的凈月潭公園.兩人同時(shí)從學(xué)校出發(fā),以a米/分的速度勻速行駛.出發(fā)4.5分鐘時(shí),甲同學(xué)發(fā)現(xiàn)忘記帶學(xué)生證,以1.5a米/分的速度按原路返回學(xué)校,取完學(xué)生證(在學(xué)校取學(xué)生證所用時(shí)間忽略不計(jì)),繼續(xù)以返回時(shí)的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設(shè)甲、乙兩名大學(xué)生距學(xué)校的路程為s(米),乙同學(xué)行駛的時(shí)間為t(分),s與t之間的函數(shù)圖象如圖所示.(1)求a、b的值.(2)求甲追上乙時(shí),距學(xué)校的路程.(3)當(dāng)兩人相距500米時(shí),直接寫出t的值是.20.(6分)某養(yǎng)雞場有2500只雞準(zhǔn)備對(duì)外出售.從中隨機(jī)抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統(tǒng)計(jì)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(Ⅲ)根據(jù)樣本數(shù)據(jù),估計(jì)這2500只雞中,質(zhì)量為的約有多少只?21.(6分)已知點(diǎn)P,Q為平面直角坐標(biāo)系xOy中不重合的兩點(diǎn),以點(diǎn)P為圓心且經(jīng)過點(diǎn)Q作⊙P,則稱點(diǎn)Q為⊙P的“關(guān)聯(lián)點(diǎn)”,⊙P為點(diǎn)Q的“關(guān)聯(lián)圓”.(1)已知⊙O的半徑為1,在點(diǎn)E(1,1),F(xiàn)(﹣,),M(0,-1)中,⊙O的“關(guān)聯(lián)點(diǎn)”為______;(2)若點(diǎn)P(2,0),點(diǎn)Q(3,n),⊙Q為點(diǎn)P的“關(guān)聯(lián)圓”,且⊙Q的半徑為,求n的值;(3)已知點(diǎn)D(0,2),點(diǎn)H(m,2),⊙D是點(diǎn)H的“關(guān)聯(lián)圓”,直線y=﹣x+4與x軸,y軸分別交于點(diǎn)A,B.若線段AB上存在⊙D的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍.22.(8分)為實(shí)施“農(nóng)村留守兒童關(guān)愛計(jì)劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計(jì)圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整;某愛心人士決定從只有2名留守兒童的這些班級(jí)中,任選兩名進(jìn)行生活資助,請(qǐng)用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個(gè)班級(jí)的概率.23.(8分)如圖拋物線y=ax2+bx,過點(diǎn)A(4,0)和點(diǎn)B(6,2),四邊形OCBA是平行四邊形,點(diǎn)M(t,0)為x軸正半軸上的點(diǎn),點(diǎn)N為射線AB上的點(diǎn),且AN=OM,點(diǎn)D為拋物線的頂點(diǎn).(1)求拋物線的解析式,并直接寫出點(diǎn)D的坐標(biāo);(2)當(dāng)△AMN的周長最小時(shí),求t的值;(3)如圖②,過點(diǎn)M作ME⊥x軸,交拋物線y=ax2+bx于點(diǎn)E,連接EM,AE,當(dāng)△AME與△DOC相似時(shí).請(qǐng)直接寫出所有符合條件的點(diǎn)M坐標(biāo).24.(10分)某商場服裝部為了調(diào)動(dòng)營業(yè)員的積極性,決定實(shí)行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對(duì)營業(yè)員進(jìn)行適當(dāng)?shù)莫?jiǎng)勵(lì).為了確定一個(gè)適當(dāng)?shù)脑落N售目標(biāo),商場服裝部統(tǒng)計(jì)了每位營業(yè)員在某月的銷售額(單位:萬元),數(shù)據(jù)如下:171816132415282618192217161932301614152615322317151528281619對(duì)這30個(gè)數(shù)據(jù)按組距3進(jìn)行分組,并整理、描述和分析如下.頻數(shù)分布表組別一二三四五六七銷售額頻數(shù)79322數(shù)據(jù)分析表平均數(shù)眾數(shù)中位數(shù)20.318請(qǐng)根據(jù)以上信息解答下列問題:填空:a=,b=,c=;若將月銷售額不低于25萬元確定為銷售目標(biāo),則有位營業(yè)員獲得獎(jiǎng)勵(lì);若想讓一半左右的營業(yè)員都能達(dá)到銷售目標(biāo),你認(rèn)為月銷售額定為多少合適?說明理由.25.(10分)某花卉基地種植了郁金香和玫瑰兩種花卉共30畝,有關(guān)數(shù)據(jù)如表:成本(單位:萬元/畝)銷售額(單位:萬元/畝)郁金香2.43玫瑰22.5(1)設(shè)種植郁金香x畝,兩種花卉總收益為y萬元,求y關(guān)于x的函數(shù)關(guān)系式.(收益=銷售額﹣成本)(2)若計(jì)劃投入的成本的總額不超過70萬元,要使獲得的收益最大,基地應(yīng)種植郁金香和玫瑰個(gè)多少畝?26.(12分)在一個(gè)不透明的盒子中裝有大小和形狀相同的3個(gè)紅球和2個(gè)白球,把它們充分?jǐn)噭颍皬闹腥我獬槿?個(gè)球不是紅球就是白球”是事件,“從中任意抽取1個(gè)球是黑球”是事件;從中任意抽取1個(gè)球恰好是紅球的概率是;學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個(gè)球,若兩球同色,則選甲;若兩球異色,則選乙.你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)用列表法或畫樹狀圖法加以說明.27.(12分)如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點(diǎn),∠EAD=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△AFB,連接EF.求證:EF=ED;若AB=2,CD=1,求FE的長.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】試題分析:作AC⊥x軸于點(diǎn)C,作BD⊥x軸于點(diǎn)D.則∠BDO=∠ACO=90°,則∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故選C.考點(diǎn):1.相似三角形的判定與性質(zhì);2.反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.2、A【解析】

方程變形后,配方得到結(jié)果,即可做出判斷.【詳解】方程,變形得:,配方得:,即故選A.本題考查的知識(shí)點(diǎn)是了解一元二次方程﹣配方法,解題關(guān)鍵是熟練掌握完全平方公式.3、C【解析】

由平行四邊形的性質(zhì)得出∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,由三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴,由折疊的性質(zhì)得:,,∴,,∴;故選C.本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì)和折疊的性質(zhì),求出∠AEF和∠AED′是解決問題的關(guān)鍵.4、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴點(diǎn)C在線段OB的垂直平分線上,∴設(shè)C(a,3),則C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故選B.點(diǎn)睛:掌握等腰三角形的性質(zhì)、函數(shù)圖像的平移.5、B【解析】

根據(jù)題意可知AP為∠CAB的平分線,由角平分線的性質(zhì)得出CD=DH,再由三角形的面積公式可得出結(jié)論.【詳解】由題意可知AP為∠CAB的平分線,過點(diǎn)D作DH⊥AB于點(diǎn)H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關(guān)鍵.6、D【解析】分析:根據(jù)相似三角形的性質(zhì)進(jìn)行解答即可.詳解:∵在平行四邊形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故選D.點(diǎn)睛:考查相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方.7、A【解析】兩邊都除以3,得x>﹣y,兩邊都加y,得:x+y>0,故選A.8、D【解析】

過點(diǎn)C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點(diǎn)的坐標(biāo)特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點(diǎn)坐標(biāo)可求.【詳解】如圖,過點(diǎn)C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點(diǎn),∴當(dāng)x=0時(shí),y=2,則B(0,2);當(dāng)y=0時(shí),x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質(zhì)以及一次函數(shù)的應(yīng)用,熟練掌握相關(guān)知識(shí)點(diǎn)是解答的關(guān)鍵.9、C【解析】

由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點(diǎn)A、B,CD切⊙O于點(diǎn)E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.本題主要考查切線的性質(zhì),利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關(guān)鍵.10、A【解析】

先根據(jù)正五邊形的性質(zhì)求出∠EAB的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.此題考查平行線的性質(zhì),多邊形內(nèi)角與外角,解題關(guān)鍵在于求出∠EAB.11、D【解析】

根據(jù)ab<0及正比例函數(shù)與反比例函數(shù)圖象的特點(diǎn),可以從a>0,b<0和a<0,b>0兩方面分類討論得出答案.【詳解】解:∵ab<0,∴分兩種情況:(1)當(dāng)a>0,b<0時(shí),正比例函數(shù)y=ax數(shù)的圖象過原點(diǎn)、第一、三象限,反比例函數(shù)圖象在第二、四象限,無此選項(xiàng);(2)當(dāng)a<0,b>0時(shí),正比例函數(shù)的圖象過原點(diǎn)、第二、四象限,反比例函數(shù)圖象在第一、三象限,選項(xiàng)D符合.故選D本題主要考查了反比例函數(shù)的圖象性質(zhì)和正比例函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)才能靈活解題.12、A【解析】

一個(gè)n邊形剪去一個(gè)角后,剩下的形狀可能是n邊形或(n+1)邊形或(n-1)邊形.故當(dāng)剪去一個(gè)角后,剩下的部分是一個(gè)18邊形,則這張紙片原來的形狀可能是18邊形或17邊形或19邊形,不可能是16邊形.故選A.此題主要考查了多邊形,減去一個(gè)角的方法可能有三種:經(jīng)過兩個(gè)相鄰點(diǎn),則少了一條邊;經(jīng)過一個(gè)頂點(diǎn)和一邊,邊數(shù)不變;經(jīng)過兩條鄰邊,邊數(shù)增加一條.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、x>1.【解析】

按照去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1的步驟求解即可.【詳解】解:去分母得:x﹣1>8﹣2x,移項(xiàng)合并得:3x>12,解得:x>1,故答案為:x>1本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關(guān)鍵.14、.【解析】

當(dāng)PC⊥AB時(shí),線段PQ最短;連接CP、CQ,根據(jù)勾股定理知PQ2=CP2﹣CQ2,先求出CP的長,然后由勾股定理即可求得答案.【詳解】連接CP、CQ;如圖所示:∵PQ是⊙C的切線,∴CQ⊥PQ,∠CQP=90°,根據(jù)勾股定理得:PQ2=CP2﹣CQ2,∴當(dāng)PC⊥AB時(shí),線段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.故答案為:.本題考查了切線的性質(zhì)以及勾股定理的運(yùn)用;注意掌握輔助線的作法,注意當(dāng)PC⊥AB時(shí),線段PQ最短是關(guān)鍵.15、m(m+n)(m﹣n).【解析】試題分析:原式==m(m+n)(m﹣n).故答案為:m(m+n)(m﹣n).考點(diǎn):提公因式法與公式法的綜合運(yùn)用.16、3【解析】分析:由已知條件易得:EF∥AB,且EF:AB=1:2,從而可得△CEF∽△CAB,且相似比為1:2,設(shè)S△CEF=x,根據(jù)相似三角形的性質(zhì)可得方程:,解此方程即可求得△EFC的面積.詳解:∵在△ABC中,點(diǎn)E,F(xiàn)分別是AC,BC的中點(diǎn),∴EF是△ABC的中位線,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,設(shè)S△CEF=x,∵S△CAB=S△CEF+S四邊形ABFE,S四邊形ABFE=9,∴,解得:,經(jīng)檢驗(yàn):是所列方程的解.故答案為:3.點(diǎn)睛:熟悉三角形的中位線定理和相似三角形的面積比等于相似比的平方是正確解答本題的關(guān)鍵.17、67.1【解析】試題分析:∵圖中是正八邊形,∴各內(nèi)角度數(shù)和=(8﹣2)×180°=1080°,∴∠HAB=1080°÷8=131°,∴∠BAE=131°÷2=67.1°.故答案為67.1.考點(diǎn):多邊形的內(nèi)角18、85【解析】

根據(jù)中位數(shù)求法,將學(xué)生成績從小到大排列,取中間兩數(shù)的平均數(shù)即可解題.【詳解】解:將六位同學(xué)的成績按從小到大進(jìn)行排列為:75,75,84,86,92,99,中位數(shù)為中間兩數(shù)84和86的平均數(shù),∴這六位同學(xué)成績的中位數(shù)是85.本題考查了中位數(shù)的求法,屬于簡單題,熟悉中位數(shù)的概念是解題關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)a的值為200,b的值為30;(2)甲追上乙時(shí),與學(xué)校的距離4100米;(3)1.1或17.1.【解析】

(1)根據(jù)速度=路程÷時(shí)間,即可解決問題.(2)首先求出甲返回用的時(shí)間,再列出方程即可解決問題.(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)由題意a==200,b==30,∴a=200,b=30.(2)+4.1=7.1,設(shè)t分鐘甲追上乙,由題意,300(t?7.1)=200t,解得t=22.1,22.1×200=4100,∴甲追上乙時(shí),距學(xué)校的路程4100米.(3)兩人相距100米是的時(shí)間為t分鐘.由題意:1.1×200(t?4.1)+200(t?4.1)=100,解得t=1.1分鐘,或300(t?7.1)+100=200t,解得t=17.1分鐘,故答案為1.1分鐘或17.1分鐘.點(diǎn)睛:本題主要考查了函數(shù)圖象的讀圖能力和函數(shù)與實(shí)際問題結(jié)合的應(yīng)用.要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析即圖象的變化趨勢(shì)得出函數(shù)的類型和所需要的條件,結(jié)合實(shí)際意義得到正確的結(jié)論.20、(Ⅰ)28.(Ⅱ)平均數(shù)是1.52.眾數(shù)為1.8.中位數(shù)為1.5.(Ⅲ)200只.【解析】分析:(Ⅰ)用整體1減去所有已知的百分比即可求出m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權(quán)平均數(shù)的定義計(jì)算即可;(Ⅲ)用總數(shù)乘以樣本中2.0kg的雞所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)觀察條形統(tǒng)計(jì)圖,∵,∴這組數(shù)據(jù)的平均數(shù)是1.52.∵在這組數(shù)據(jù)中,1.8出現(xiàn)了16次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為1.8.∵將這組數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個(gè)數(shù)都是1.5,有,∴這組數(shù)據(jù)的中位數(shù)為1.5.(Ⅲ)∵在所抽取的樣本中,質(zhì)量為的數(shù)量占.∴由樣本數(shù)據(jù),估計(jì)這2500只雞中,質(zhì)量為的數(shù)量約占.有.∴這2500只雞中,質(zhì)量為的約有200只.點(diǎn)睛:此題主要考查了平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計(jì)意義以及利用樣本估計(jì)總體等知識(shí).找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)或兩個(gè)數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個(gè);平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個(gè)數(shù).21、(1)F,M;(1)n=1或﹣1;(3)≤m≤或≤m≤.【解析】

(1)根據(jù)定義,認(rèn)真審題即可解題,(1)在直角三角形PHQ中勾股定理解題即可,(3)當(dāng)⊙D與線段AB相切于點(diǎn)T時(shí),由sin∠OBA=,得DT=DH1=,進(jìn)而求出m1=即可,②當(dāng)⊙D過點(diǎn)A時(shí),連接AD.由勾股定理得DA==DH1=即可解題.【詳解】解:(1)∵OF=OM=1,∴點(diǎn)F、點(diǎn)M在⊙上,∴F、M是⊙O的“關(guān)聯(lián)點(diǎn)”,故答案為F,M.(1)如圖1,過點(diǎn)Q作QH⊥x軸于H.∵PH=1,QH=n,PQ=.∴由勾股定理得,PH1+QH1=PQ1,即11+n1=()1,解得,n=1或﹣1.(3)由y=﹣x+4,知A(3,0),B(0,4)∴可得AB=5①如圖1(1),當(dāng)⊙D與線段AB相切于點(diǎn)T時(shí),連接DT.則DT⊥AB,∠DTB=90°∵sin∠OBA=,∴可得DT=DH1=,∴m1=,②如圖1(1),當(dāng)⊙D過點(diǎn)A時(shí),連接AD.由勾股定理得DA==DH1=.綜合①②可得:≤m≤或≤m≤.本題考查圓的新定義問題,三角函數(shù)和勾股定理的應(yīng)用,難度較大,分類討論,遷移知識(shí)理解新定義是解題關(guān)鍵.22、解:(1)該校班級(jí)個(gè)數(shù)為4÷20%=20(個(gè)),只有2名留守兒童的班級(jí)個(gè)數(shù)為:20﹣(2+3+4+5+4)=2(個(gè)),該校平均每班留守兒童的人數(shù)為:=4(名),補(bǔ)圖如下:(2)由(1)得只有2名留守兒童的班級(jí)有2個(gè),共4名學(xué)生.設(shè)A1,A2來自一個(gè)班,B1,B2來自一個(gè)班,有樹狀圖可知,共有12中等可能的情況,其中來自一個(gè)班的共有4種情況,則所選兩名留守兒童來自同一個(gè)班級(jí)的概率為:=.【解析】(1)首先求出班級(jí)數(shù),然后根據(jù)條形統(tǒng)計(jì)圖求出只有2名留守兒童的班級(jí)數(shù),再求出總的留守兒童數(shù),最后求出每班平均留守兒童數(shù);(2)利用樹狀圖確定可能種數(shù)和來自同一班的種數(shù),然后就能算出來自同一個(gè)班級(jí)的概率.23、(1)y=x2﹣x,點(diǎn)D的坐標(biāo)為(2,﹣);(2)t=2;(3)M點(diǎn)的坐標(biāo)為(2,0)或(6,0).【解析】

(1)利用待定系數(shù)法求拋物線解析式;利用配方法把一般式化為頂點(diǎn)式得到點(diǎn)D的坐標(biāo);(2)連接AC,如圖①,先計(jì)算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時(shí),CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設(shè)M(t,0),則E(t,t2-t),根據(jù)相似三角形的判定方法,當(dāng)時(shí),△AME∽△COD,即|t-4|:4=|t2-t|:,當(dāng)時(shí),△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對(duì)值方程可得到對(duì)應(yīng)的M點(diǎn)的坐標(biāo).【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點(diǎn)D的坐標(biāo)為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,當(dāng)CM⊥OA時(shí),CM的值最小,△AMN的周長最小,此時(shí)OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD為直角三角形,∠COD=90°,設(shè)M(t,0),則E(t,t2-t),∵∠AME=∠COD,∴當(dāng)時(shí),△AME∽△COD,即|t-4|:4=|t2-t|:,整理得|t2-t|=|t-4|,解方程t2-t=(t-4)得t1=4(舍去),t2=2,此時(shí)M點(diǎn)坐標(biāo)為(2,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-2(舍去);當(dāng)時(shí),△AME∽△DOC,即|t-4|:=|t2-t|:4,整理得|t2-t|=|t-4|,解方程t2-t=t-4得t1=4(舍去),t2=6,此時(shí)M點(diǎn)坐標(biāo)為(6,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-6(舍去);綜上所述,M點(diǎn)的坐標(biāo)為(2,0)或(6,0).本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)、平行四邊形的性質(zhì)和菱形的判定與性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì);熟練掌握相似三角形的判定方法;會(huì)運(yùn)用分類討論的思想解決數(shù)學(xué)問題.24、(1)眾數(shù)為15;(2)3,4,15;8;(3)月銷售額定為18萬,有一半左右的營業(yè)員能達(dá)到銷售目標(biāo).【解析】

根據(jù)數(shù)據(jù)可得到落在第四組、第六組的個(gè)數(shù)分別為3個(gè)、4個(gè),所以a=3,b=4,再根據(jù)數(shù)據(jù)可得15出現(xiàn)了5次,出現(xiàn)次數(shù)最多,所以眾數(shù)c=15;從頻數(shù)分布表中可以看出月銷售額不低于25萬元的營業(yè)員有8個(gè),所以本小題答案為:8;本題是考查中位數(shù)的知識(shí),根據(jù)中位數(shù)可以讓一半左右的營業(yè)員達(dá)到銷售目標(biāo).【詳解】解:(1)在范圍內(nèi)的數(shù)據(jù)有3個(gè),在范圍內(nèi)的數(shù)據(jù)有4個(gè),15出現(xiàn)的次數(shù)最大,則眾數(shù)為15;(2)月銷售額不低于25萬元為后面三組數(shù)據(jù),即有8位營業(yè)員獲得獎(jiǎng)勵(lì);故答案為3,4,15;8;(3)想讓一半左右的營業(yè)員都能達(dá)到銷售目標(biāo),我認(rèn)為月銷售額定為18萬合適.因?yàn)橹形粩?shù)為18,即大于18與小于18的人數(shù)一樣多,所以月銷售額定為18萬,有一半左右的營業(yè)員能達(dá)到銷售目標(biāo).本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論