




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省珠海市名校2023-2024學年中考數學模擬預測題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.2cos30°的值等于()A.1 B. C. D.22.如圖,在射線AB上順次取兩點C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點A沿逆時針方向旋轉,旋轉角記為α(其中0°<α<45°),旋轉后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點G,H.若CG=x,EH=y,則下列函數圖象中,能反映y與x之間關系的是()A. B. C. D.3.下列關于x的方程中,屬于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=04.如圖,E,B,F,C四點在一條直線上,EB=CF,∠A=∠D,再添一個條件仍不能證明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁6.如圖,將四根長度相等的細木條首尾相連,用釘子釘成四邊形,轉動這個四邊形,使它形狀改變,當,時,等于()A. B. C. D.7.一次函數滿足,且y隨x的增大而減小,則此函數的圖像一定不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.鄭州地鐵Ⅰ號線火車站站口分布如圖所示,有A,B,C,D,E五個進出口,小明要從這里乘坐地鐵去新鄭機場,回來后仍從這里出站,則他恰好選擇從同一個口進出的概率是()A. B. C. D.9.按如圖所示的方法折紙,下面結論正確的個數()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個 B.2個 C.1個 D.4個10.如圖,若AB∥CD,則α、β、γ之間的關系為()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°二、填空題(本大題共6個小題,每小題3分,共18分)11.某市政府為了改善城市容貌,綠化環境,計劃經過兩年時間,使綠地面積增加44%,則這兩年平均綠地面積的增長率為______.12.如圖,在△ABC中,AD、BE分別是邊BC、AC上的中線,AB=AC=5,cos∠C=,那么GE=_______.13.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,則2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,計算出1+3+32+33+…+32018的值為_____.14.若2x+y=2,則4x+1+2y的值是_______.15.寫出一個經過點(1,2)的函數表達式_____.16.如圖,矩形ABCD的邊AB在x軸上,AB的中點與原點O重合,AB=2,AD=1,點E的坐標為(0,2).點F(x,0)在邊AB上運動,若過點E、F的直線將矩形ABCD的周長分成2:1兩部分,則x的值為__.三、解答題(共8題,共72分)17.(8分)如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.18.(8分)如圖,在等腰直角△ABC中,∠C是直角,點A在直線MN上,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.(1)如圖1,當C,B兩點均在直線MN的上方時,①直接寫出線段AE,BF與CE的數量關系.②猜測線段AF,BF與CE的數量關系,不必寫出證明過程.(2)將等腰直角△ABC繞著點A順時針旋轉至圖2位置時,線段AF,BF與CE又有怎樣的數量關系,請寫出你的猜想,并寫出證明過程.(3)將等腰直角△ABC繞著點A繼續旋轉至圖3位置時,BF與AC交于點G,若AF=3,BF=7,直接寫出FG的長度.19.(8分)某商店經營兒童益智玩具,已知成批購進時的單價是20元.調查發現:銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每件玩具售價不能高于40元.設每件玩具的銷售單價上漲了x元時(x為正整數),月銷售利潤為y元.求y與x的函數關系式并直接寫出自變量x的取值范圍.每件玩具的售價定為多少元時,月銷售利潤恰為2520元?每件玩具的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?20.(8分)如圖,有6個質地和大小均相同的球,每個球只標有一個數字,將標有3,4,5的三個球放入甲箱中,標有4,5,6的三個球放入乙箱中.(1)小宇從甲箱中隨機模出一個球,求“摸出標有數字是3的球”的概率;(2)小宇從甲箱中、小靜從乙箱中各自隨機摸出一個球,若小宇所摸球上的數字比小靜所摸球上的數字大1,則稱小宇“略勝一籌”.請你用列表法(或畫樹狀圖)求小宇“略勝一籌”的概率.21.(8分)某商場服裝部為了調動營業員的積極性,決定實行目標管理,根據目標完成的情況對營業員進行適當的獎勵.為了確定一個適當的月銷售目標,商場服裝部統計了每位營業員在某月的銷售額(單位:萬元),數據如下:171816132415282618192217161932301614152615322317151528281619對這30個數據按組距3進行分組,并整理、描述和分析如下.頻數分布表組別一二三四五六七銷售額頻數79322數據分析表平均數眾數中位數20.318請根據以上信息解答下列問題:填空:a=,b=,c=;若將月銷售額不低于25萬元確定為銷售目標,則有位營業員獲得獎勵;若想讓一半左右的營業員都能達到銷售目標,你認為月銷售額定為多少合適?說明理由.22.(10分)如圖,一次函數y1=kx+b的圖象與反比例函數y2=的圖象交于A(2,3),B(6,n)兩點.分別求出一次函數與反比例函數的解析式;求△OAB的面積.23.(12分)先化簡,再求值:,其中與2,3構成的三邊,且為整數.24.如圖,在Rt△ABC中,,CD⊥AB于點D,BE⊥AB于點B,BE=CD,連接CE,DE.(1)求證:四邊形CDBE為矩形;(2)若AC=2,,求DE的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:根據30°角的三角函數值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數值的應用,熟記30°、45°、60°角的三角函數值是解題關鍵.2、D【解析】∵四邊形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故選D.【點睛】本題主要考查了旋轉、相似等知識,解題的關鍵是根據已知得出△ACG∽△ADH.3、B【解析】
根據一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數;②只含有一個未知數;③未知數的最高次數是2進行分析即可.【詳解】A.未知數的最高次數不是2
,不是一元二次方程,故此選項錯誤;
B.
是一元二次方程,故此選項正確;
C.
未知數的最高次數是3,不是一元二次方程,故此選項錯誤;
D.
a=0時,不是一元二次方程,故此選項錯誤;
故選B.【點睛】本題考查一元二次方程的定義,解題的關鍵是明白:一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數;②只含有一個未知數;③未知數的最高次數是2.4、A【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB與原條件滿足SSA,不能證明△ABC≌△DEF,故A選項正確.B、添加DF∥AC,可得∠DFE=∠ACB,根據AAS能證明△ABC≌△DEF,故B選項錯誤.C、添加∠E=∠ABC,根據AAS能證明△ABC≌△DEF,故C選項錯誤.D、添加AB∥DE,可得∠E=∠ABC,根據AAS能證明△ABC≌△DEF,故D選項錯誤,故選A.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.5、D【解析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是丁.故選D.6、B【解析】
首先連接AC,由將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,AB=1,,易得△ABC是等邊三角形,即可得到答案.【詳解】連接AC,
∵將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,
∴AB=BC,
∵,
∴△ABC是等邊三角形,
∴AC=AB=1.
故選:B.【點睛】本題考點:菱形的性質.7、C【解析】
y隨x的增大而減小,可得一次函數y=kx+b單調遞減,k<0,又滿足kb<0,可得b>0,由此即可得出答案.【詳解】∵y隨x的增大而減小,∴一次函數y=kx+b單調遞減,∴k<0,∵kb<0,∴b>0,∴直線經過第二、一、四象限,不經過第三象限,故選C.【點睛】本題考查了一次函數的圖象和性質,熟練掌握一次函數y=kx+b(k≠0,k、b是常數)的圖象和性質是解題的關鍵.8、C【解析】
列表得出進出的所有情況,再從中確定出恰好選擇從同一個口進出的結果數,繼而根據概率公式計算可得.【詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個口進出的有5種情況,∴恰好選擇從同一個口進出的概率為=,故選C.【點睛】此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.9、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.10、C【解析】
過點E作EF∥AB,如圖,易得CD∥EF,然后根據平行線的性質可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,進一步即得結論.【詳解】解:過點E作EF∥AB,如圖,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故選:C.【點睛】本題考查了平行公理的推論和平行線的性質,屬于常考題型,作EF∥AB、熟練掌握平行線的性質是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、10%【解析】
本題可設這兩年平均每年的增長率為x,因為經過兩年時間,讓市區綠地面積增加44%,則有(1+x)1=1+44%,解這個方程即可求出答案.【詳解】解:設這兩年平均每年的綠地增長率為x,根據題意得,
(1+x)1=1+44%,
解得x1=-1.1(舍去),x1=0.1.
答:這兩年平均每年綠地面積的增長率為10%.故答案為10%【點睛】此題考查增長率的問題,一般公式為:原來的量×(1±x)1=現在的量,增長用+,減少用-.但要注意解的取舍,及每一次增長的基礎.12、【解析】
過點E作EF⊥BC交BC于點F,分別求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再結合△BGD∽△BEF即可.【詳解】過點E作EF⊥BC交BC于點F.∵AB=AC,AD為BC的中線∴AD⊥BC∴EF為△ADC的中位線.又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2∴BF=6∴在Rt△BEF中BE==,又∵△BGD∽△BEF∴,即BG=.GE=BE-BG=故答案為.【點睛】本題考查的知識點是三角形的相似,解題的關鍵是熟練的掌握三角形的相似.13、【解析】
仿照已知方法求出所求即可.【詳解】令S=1+3+32+33+…+32018,則3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案為:.【點睛】本題考查了有理數的混合運算,熟練掌握運算法則是解答本題的關鍵.14、1【解析】分析:將原式化簡成2(2x+y)+1,然后利用整體代入的思想進行求解得出答案.詳解:原式=2(2x+y)+1=2×2+1=1.點睛:本題主要考查的是整體思想求解,屬于基礎題型.找到整體是解題的關鍵.15、y=x+1(答案不唯一)【解析】
本題屬于結論開放型題型,可以將函數的表達式設計為一次函數、反比例函數、二次函數的表達式.答案不唯一.【詳解】解:所求函數表達式只要圖象經過點(1,2)即可,如y=2x,y=x+1,…答案不唯一.
故答案可以是:y=x+1(答案不唯一).【點睛】本題考查函數,解題的關鍵是清楚幾種函數的一般式.16、或﹣.【解析】
試題分析:當點F在OB上時,設EF交CD于點P,可求點P的坐標為(,1).則AF+AD+DP=3+x,CP+BC+BF=3﹣x,由題意可得:3+x=2(3﹣x),解得:x=.由對稱性可求當點F在OA上時,x=﹣,故滿足題意的x的值為或﹣.故答案是或﹣.【點睛】考點:動點問題.三、解答題(共8題,共72分)17、(1)(2)作圖見解析;(3).【解析】
(1)利用平移的性質畫圖,即對應點都移動相同的距離.(2)利用旋轉的性質畫圖,對應點都旋轉相同的角度.(3)利用勾股定理和弧長公式求點B經過(1)、(2)變換的路徑總長.【詳解】解:(1)如答圖,連接AA1,然后從C點作AA1的平行線且A1C1=AC,同理找到點B1,分別連接三點,△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點A1按逆時針方向旋轉90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點B所走的路徑總長=.考點:1.網格問題;2.作圖(平移和旋轉變換);3.勾股定理;4.弧長的計算.18、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見解析;(3)FG=.【解析】
(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問題;②利用①中結論即可解決問題;(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問題;【詳解】解:(1)證明:①如圖1,過點C做CD⊥BF,交FB的延長線于點D,∵CE⊥MN,CD⊥BF,∴∠CEA=∠D=90°,∵CE⊥MN,CD⊥BF,BF⊥MN,∴四邊形CEFD為矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB,即∠ACE=∠BCD,又∵△ABC為等腰直角三角形,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,又∵四邊形CEFD為矩形,∴四邊形CEFD為正方形,∴CE=EF=DF=CD,∴AE+BF=DB+BF=DF=EC.②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF-BF=2CE圖2中,過點C作CG⊥BF,交BF延長線于點G,∵AC=BC可得∠AEC=∠CGB,∠ACE=∠BCG,在△CBG和△CAE中,,∴△CBG≌△CAE(AAS),∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF-BF=2CE;(3)如圖3,過點C做CD⊥BF,交FB的于點D,∵AC=BC可得∠AEC=∠CDB,∠ACE=∠BCD,在△CBD和△CAE中,,∴△CBD≌△CAE(AAS),∴AE=BD,∵AF=AE-EF,∴AF=BD-CE=BF-FD-CE=BF-2CE,∴BF-AF=2CE.∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG∥EC,∴,∴,∴FG=.【點睛】本題考查幾何變換綜合題、正方形的判定和性質、全等三角形的判定和性質、平行線分線段成比例定理、等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.19、(1)y=﹣10x2+130x+2300,0<x≤10且x為正整數;(2)每件玩具的售價定為32元時,月銷售利潤恰為2520元;(3)每件玩具的售價定為36元或37元時,每個月可獲得最大利潤,最大的月利潤是2720元.【解析】
(1)根據題意知一件玩具的利潤為(30+x-20)元,月銷售量為(230-10x),然后根據月銷售利潤=一件玩具的利潤×月銷售量即可求出函數關系式.(2)把y=2520時代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成頂點式,求得當x=6.5時,y有最大值,再根據0<x≤10且x為正整數,分別計算出當x=6和x=7時y的值即可.【詳解】(1)根據題意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自變量x的取值范圍是:0<x≤10且x為正整數;(2)當y=2520時,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合題意,舍去)當x=2時,30+x=32(元)答:每件玩具的售價定為32元時,月銷售利潤恰為2520元.(3)根據題意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴當x=6.5時,y有最大值為2722.5,∵0<x≤10且x為正整數,∴當x=6時,30+x=36,y=2720(元),當x=7時,30+x=37,y=2720(元),答:每件玩具的售價定為36元或37元時,每個月可獲得最大利潤,最大的月利潤是2720元.【點睛】本題主要考查了二次函數的實際應用,解題的關鍵是分析題意,找到關鍵描述語,求出函數的解析式,用到的知識點是二次函數的性質和解一元二次方程.20、(1);(2)P(小宇“略勝一籌”)=.【解析】分析:(1)由題意可知,小宇從甲箱中任意摸出一個球,共有3種等可能結果出現,其中結果為3的只有1種,由此可得小宇從甲箱中任取一個球,剛好摸到“標有數字3”的概率為;(2)根據題意通過列表的方式列舉出小宇和小靜摸球的所有等可能結果,然后根據表中結果進行解答即可.詳解:(1)P(摸出標有數字是3的球)=.(2)小宇和小靜摸球的所有結果如下表所示:小靜小宇4563(3,4)(3,5)(3,6)4(4,4)(4,5)(4,6)5(5,4)(5,5)(5,6)從上表可知,一共有九種可能,其中小宇所摸球的數字比小靜的大1的有一種,因此P(小宇“略勝一籌”)=.點睛:能正確通過列表的方式列舉出小宇在甲箱中任摸一個球和小靜在乙箱中任摸一個球的所有等可能結果,是正確解答本題第2小題的關鍵.21、(1)眾數為15;(2)3,4,15;8;(3)月銷售額定為18萬,有一半左右的營業員能達到銷售目標.【解析】
根據數據可得到落在第四組、第六組的個數分別為3個、4個,所以a=3,b=4,再根據數據可得15出現了5次,出現次數最多,所以眾數c=15;從頻數分布表中可以看出月銷售額不低于25萬元的營業員有8個,所以本小題答案為:8;本題是考查中位數的知識,根據中位數可以讓一半左右的營業員達到銷售目標.【詳解】解:(1)在范圍內的數據有3個,在范圍內的數據有4個,15出現的次數最大,則眾數為15;(2)月銷售額不低于25萬元為后面三組數據,即有8位營業員獲得獎勵;故答案為3,4,15;8;(3)想讓一半左右的營業員都能達到銷售目標,我認為月銷售額定為18萬合適.因為中位數為18,即大于18與小于18的人數一樣多,所以月銷售額定為1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電針技能考試題及答案
- 疫情反彈面試題及答案
- 全球創新藥研發企業研發能力與競爭格局研究報告
- 死亡音樂測試題及答案
- 小學教師教育教學反思與情感教育的深度整合試題及答案
- 裝備制造業自主創新能力提升中的產業技術創新戰略聯盟構建與實施效果評估報告
- 2025南航招聘面試題庫及答案
- 2025南航招聘空姐面試問題及答案
- 2025護士面試題庫及答案
- 小學教師教育教學反思與家校互動的有效模式探討試題及答案
- 素養為本的教學評一體化教學設計核心理念
- 譯林版三年級上冊英語書單詞表
- 康復科并發癥二次殘疾
- (新版)拖拉機駕駛證科目一知識考試題庫500題(含答案)
- 2025年中考物理一輪復習:物理學與社會發展 專項練習
- DL∕T 526-2013 備用電源自動投入裝置技術條件
- 2024年北京大興區九年級初三一模英語試題和答案
- 食品生物化學 知到智慧樹網課答案
- 2024年江蘇國信新豐海上風力發電有限公司招聘筆試沖刺題(帶答案解析)
- 學術交流英語(學術寫作)智慧樹知到期末考試答案2024年
- MOOC 國情分析與商業設計-暨南大學 中國大學慕課答案
評論
0/150
提交評論