2025屆遂寧市重點中學高三下學期開學學情檢測試題數學試題_第1頁
2025屆遂寧市重點中學高三下學期開學學情檢測試題數學試題_第2頁
2025屆遂寧市重點中學高三下學期開學學情檢測試題數學試題_第3頁
2025屆遂寧市重點中學高三下學期開學學情檢測試題數學試題_第4頁
2025屆遂寧市重點中學高三下學期開學學情檢測試題數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆遂寧市重點中學高三下學期開學學情檢測試題數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數z=(1+2i)(1+ai)(a∈R),若z∈R,則實數a=()A. B. C.2 D.﹣22.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③3.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.54.設等差數列的前n項和為,且,,則()A.9 B.12 C. D.5.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.6.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關關系,統計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關關系為()A.正相關,相關系數的值為B.負相關,相關系數的值為C.負相關,相關系數的值為D.正相關,相關負數的值為7.拋物線的焦點為,則經過點與點且與拋物線的準線相切的圓的個數有()A.1個 B.2個 C.0個 D.無數個8.若,則的虛部是()A. B. C. D.9.已知等差數列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.10.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.11.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數的取值范圍為A. B. C. D.12.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經過,設球的半徑分別為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記等差數列和的前項和分別為和,若,則______.14.若,則________.15.函數在區間內有且僅有兩個零點,則實數的取值范圍是_____.16.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.18.(12分)已知函數,.(1)當x≥0時,f(x)≤h(x)恒成立,求a的取值范圍;(2)當x<0時,研究函數F(x)=h(x)﹣g(x)的零點個數;(3)求證:(參考數據:ln1.1≈0.0953).19.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標準方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設P為橢圓上一點,且OM+ON=t20.(12分)隨著電子閱讀的普及,傳統紙質媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質廣告收入如下表所示:根據這9年的數據,對和作線性相關性檢驗,求得樣本相關系數的絕對值為0.243;根據后5年的數據,對和作線性相關性檢驗,求得樣本相關系數的絕對值為0.984.(1)如果要用線性回歸方程預測該雜志社2019年的紙質廣告收入,現在有兩個方案,方案一:選取這9年數據進行預測,方案二:選取后5年數據進行預測.從實際生活背景以及線性相關性檢驗的角度分析,你覺得哪個方案更合適?附:相關性檢驗的臨界值表:(2)某購物網站同時銷售某本暢銷書籍的紙質版本和電子書,據統計,在該網站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質版本和電子書同時購買的讀者比例為,現用此統計結果作為概率,若從上述讀者中隨機調查了3位,求購買電子書人數多于只購買紙質版本人數的概率.21.(12分)已知點到拋物線C:y1=1px準線的距離為1.(Ⅰ)求C的方程及焦點F的坐標;(Ⅱ)設點P關于原點O的對稱點為點Q,過點Q作不經過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.22.(10分)在孟德爾遺傳理論中,稱遺傳性狀依賴的特定攜帶者為遺傳因子,遺傳因子總是成對出現例如,豌豆攜帶這樣一對遺傳因子:使之開紅花,使之開白花,兩個因子的相互組合可以構成三種不同的遺傳性狀:為開紅花,和一樣不加區分為開粉色花,為開白色花.生物在繁衍后代的過程中,后代的每一對遺傳因子都包含一個父系的遺傳因子和一個母系的遺傳因子,而因為生殖細胞是由分裂過程產生的,每一個上一代的遺傳因子以的概率傳給下一代,而且各代的遺傳過程都是相互獨立的.可以把第代的遺傳設想為第次實驗的結果,每一次實驗就如同拋一枚均勻的硬幣,比如對具有性狀的父系來說,如果拋出正面就選擇因子,如果拋出反面就選擇因子,概率都是,對母系也一樣.父系?母系各自隨機選擇得到的遺傳因子再配對形成子代的遺傳性狀.假設三種遺傳性狀,(或),在父系和母系中以同樣的比例:出現,則在隨機雜交實驗中,遺傳因子被選中的概率是,遺傳因子被選中的概率是.稱,分別為父系和母系中遺傳因子和的頻率,實際上是父系和母系中兩個遺傳因子的個數之比.基于以上常識回答以下問題:(1)如果植物的上一代父系?母系的遺傳性狀都是,后代遺傳性狀為,(或),的概率各是多少?(2)對某一植物,經過實驗觀察發現遺傳性狀具有重大缺陷,可人工剔除,從而使得父系和母系中僅有遺傳性狀為和(或)的個體,在進行第一代雜交實驗時,假設遺傳因子被選中的概率為,被選中的概率為,.求雜交所得子代的三種遺傳性狀,(或),所占的比例.(3)繼續對(2)中的植物進行雜交實驗,每次雜交前都需要剔除性狀為的個體假設得到的第代總體中3種遺傳性狀,(或),所占比例分別為.設第代遺傳因子和的頻率分別為和,已知有以下公式.證明是等差數列.(4)求的通項公式,如果這種剔除某種遺傳性狀的隨機雜交實驗長期進行下去,會有什么現象發生?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

化簡z=(1+2i)(1+ai)=,再根據z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數的運算及概念,還考查了運算求解的能力,屬于基礎題.2、C【解析】

根據直線與平面,平面與平面的位置關系進行判斷即可.【詳解】根據面面平行的性質以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關系,屬于中檔題.3、B【解析】

利用雙曲線的定義和條件中的比例關系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉化為a,b,c的關系式.4、A【解析】

由,可得以及,而,代入即可得到答案.【詳解】設公差為d,則解得,所以.故選:A.【點睛】本題考查等差數列基本量的計算,考查學生運算求解能力,是一道基礎題.5、D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.6、C【解析】

根據正負相關的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關.相關系數為負.故選:C.【點睛】本題考查變量的相關關系,考查正相關和負相關的區別.掌握正負相關的定義是解題基礎.7、B【解析】

圓心在的中垂線上,經過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數是2種.故選:.【點睛】本題主要考查拋物線的簡單性質,本題解題的關鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.8、D【解析】

通過復數的乘除運算法則化簡求解復數為:的形式,即可得到復數的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點睛】本題考查復數的代數形式的混合運算,復數的基本概念,屬于基礎題.9、C【解析】

首先求出等差數列的首先和公差,然后寫出數列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數列為,故.故選:C.【點睛】本題主要考查了等差數列的基本量的求解,屬于基礎題.10、C【解析】

根據雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據圓的性質可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質,需掌握雙曲線的漸近線求法,屬于中檔題.11、C【解析】

因為,,所以根據正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數的取值范圍為,故選C.12、D【解析】

由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉化出,進而求解【詳解】根據拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉化,拋物線幾何性質的使用,內切球的性質,數形結合思想,轉化思想,直觀想象與數學運算的核心素養二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

結合等差數列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數列的前項和公式及等差中項的應用,考查了學生的計算求解能力,屬于基礎題.14、13【解析】

由導函數的應用得:設,,所以,,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【詳解】解:設,,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點睛】本題考查了導函數的應用、二項式定理,屬于中檔題15、【解析】

對函數零點問題等價轉化,分離參數討論交點個數,數形結合求解.【詳解】由題:函數在區間內有且僅有兩個零點,,等價于函數恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:【點睛】此題考查函數零點問題,根據函數零點個數求參數的取值范圍,關鍵在于對函數零點問題恰當變形,等價轉化,數形結合求解.16、10【解析】

作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)取中點,連結,證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結,,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點睛】本題考查了面面垂直,二面角,意在考查學生的計算能力和空間想象能力.18、(1);(2)見解析;(3)見解析【解析】

(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得導數,討論a>1和a≤1,判斷導數的符號,由恒成立思想可得a的范圍;(2)求得F(x)=h(x)﹣g(x)的導數和二階導數,判斷F'(x)的單調性,討論a≤﹣1,a>﹣1,F(x)的單調性和零點個數;(3)由(1)知,當a=1時,ex>1+ln(x+1)對x>0恒成立,令;由(2)知,當a=﹣1時,對x<0恒成立,令,結合條件,即可得證.【詳解】(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),則,①若a≤1,則,H'(x)≥0,H(x)在[0,+∞)遞增,H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,滿足,所以a≤1;②若a>1,H′(x)=ex﹣在[0,+∞)遞增,H'(x)≥H'(0)=1﹣a,且1﹣a<0,且x→+∞時,H'(x)→+∞,則?x0∈(0,+∞),使H'(x0)=0進而H(x)在[0,x0)遞減,在(x0,+∞)遞增,所以當x∈(0,x0)時H(x)<H(0)=0,即當x∈(0,x0)時,f(x)>h(x),不滿足題意,舍去;綜合①,②知a的取值范圍為(﹣∞,1].(Ⅱ)解:依題意得,則F'(x)=ex﹣x2+a,則F''(x)=ex﹣2x>0在(﹣∞,0)上恒成立,故F'(x)=ex﹣x2+a在(﹣∞,0)遞增,所以F'(x)<F'(0)=1+a,且x→﹣∞時,F'(x)→﹣∞;①若1+a≤0,即a≤﹣1,則F'(x)<F'(0)=1+a≤0,故F(x)在(﹣∞,0)遞減,所以F(x)>F(0)=0,F(x)在(﹣∞,0)無零點;②若1+a>0,即a>﹣1,則使,進而F(x)在遞減,在遞增,,且x→﹣∞時,,F(x)在上有一個零點,在無零點,故F(x)在(﹣∞,0)有一個零點.綜合①②,當a≤﹣1時無零點;當a>﹣1時有一個零點.(Ⅲ)證明:由(Ⅰ)知,當a=1時,ex>1+ln(x+1)對x>0恒成立,令,則即;由(Ⅱ)知,當a=﹣1時,對x<0恒成立,令,則,所以;故有.【點睛】本題考查導數的運用:求單調區間,考查函數零點存在定理的運用,考查分類討論思想方法,以及運算能力和推理能力,屬于難題.對于函數的零點問題,它和方程的根的問題,和兩個函數的交點問題是同一個問題,可以互相轉化;在轉化為兩個函數交點時,如果是一個常函數一個含自變量的函數,注意讓含有自變量的函數式子盡量簡單一些.19、(1)x24+【解析】試題分析:本題主要考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標準方程;第二問,討論直線MN的斜率是否存在,當直線MN的斜率存在時,直線方程與橢圓方程聯立,消參,利用韋達定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標準方程為x2(2)由題意知,當直線MN斜率存在時,設直線方程為y=k(x-1),M(x聯立方程x24+因為直線與橢圓交于兩點,所以Δ=16k∴x又∵OM∴因為點P在橢圓x24+即2k又∵|OM即|NM|<4化簡得:13k4-5k2∵t2=1-當直線MN的斜率不存在時,M(1,??62∴t∈[-1,??考點:橢圓的標準方程及其幾何性質、直線與橢圓的位置關系.20、(1)選取方案二更合適;(2)【解析】

(1)可以預見,2019年的紙質廣告收入會接著下跌,前四年的增長趨勢已經不能作為預測后續數據的依據,而后5年的數據得到的相關系數的絕對值,所以有的把握認為與具有線性相關關系,從而可得結論;(2)求得購買電子書的概率為,只購買紙質書的概率為,購買電子書人數多于只購買紙質書人數有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質書,由此能求出購買電子書人數多于只購買紙質版本人數的概率.【詳解】(1)選取方案二更合適,理由如下:①題中介紹了,隨著電子閱讀的普及,傳統紙媒受到了強烈的沖擊,從表格中的數據中可以看出從2014年開始,廣告收入呈現逐年下降的趨勢,可以預見,2019年的紙質廣告收入會接著下跌,前四年的增長趨勢已經不能作為預測后續數據的依據.②相關系數越接近1,線性相關性越強,因為根據9年的數據得到的相關系數的絕對值,我們沒有理由認為與具有線性相關關系;而后5年的數據得到的相關系數的絕對值,所以有的把握認為與具有線性相關關系.(2)因為在該網站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質版本和電子書同時購買的讀者比例為,所以從該網站購買該書籍的大量讀者中任取一位,購買電子書的概率為,只購買紙質書的概率為,購買電子書人數多于只購買紙質書人數有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質書.概率為:.【點睛】本題主要考查最優方案的選擇,考查了相關關系的定義以及互斥事件的概率與獨立事件概率公式的應用,考查閱讀能力與運算求解能力,屬于中檔題.與實際應用相結合的題型也是高考命題的動向,這類問題的特點是通過現實生活的事例考查書本知識,解決這類問題的關鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉化為數學模型進行解答.21、(Ⅰ)C的方程為,焦點F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論