




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省濰坊市普通高中2025屆高三高考考前質(zhì)量監(jiān)測數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則,則()A. B. C. D.2.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.3.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.4.的展開式中有理項有()A.項 B.項 C.項 D.項5.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+16.若復數(shù)()在復平面內(nèi)的對應點在直線上,則等于()A. B. C. D.7.已知函數(shù),的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.8.已知實數(shù)滿足,則的最小值為()A. B. C. D.9.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.710.己知,,,則()A. B. C. D.11.已知向量,,則向量在向量上的投影是()A. B. C. D.12.把滿足條件(1),,(2),,使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個數(shù)為()①②③④⑤A.1個 B.2個 C.3個 D.4個二、填空題:本題共4小題,每小題5分,共20分。13.設為互不相等的正實數(shù),隨機變量和的分布列如下表,若記,分別為的方差,則_____.(填>,<,=)14.如果橢圓的對稱軸為坐標軸,短軸的一個端點與兩焦點組成一正三角形,焦點在x軸上,且=,那么橢圓的方程是.15.在的展開式中,的系數(shù)等于__.16.已知函數(shù),若關于的方程在定義域上有四個不同的解,則實數(shù)的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)中,內(nèi)角的對邊分別為,.(1)求的大小;(2)若,且為的重心,且,求的面積.18.(12分)為了加強環(huán)保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學期望.19.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當時,求證:.20.(12分)設(1)證明:當時,;(2)當時,求整數(shù)的最大值.(參考數(shù)據(jù):,)21.(12分)已知凸邊形的面積為1,邊長,,其內(nèi)部一點到邊的距離分別為.求證:.22.(10分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調(diào)查研究新能源汽車市場的生產(chǎn)與銷售.下圖是我國某地區(qū)年至年新能源汽車的銷量(單位:萬臺)按季度(一年四個季度)統(tǒng)計制成的頻率分布直方圖.(1)求直方圖中的值,并估計銷量的中位數(shù);(2)請根據(jù)頻率分布直方圖估計新能源汽車平均每個季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預計年的銷售量.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.本題考查換底公式和對數(shù)的運算,屬于中檔題.2.C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關鍵.3.D【解析】
以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點,以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.設,則,.設平面的法向量為,則取,得.設直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D本題考查了向量法求解線面角,考查了學生空間想象,邏輯推理,數(shù)學運算的能力,屬于中檔題.4.B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.5.B【解析】
以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.本題考查雙曲線離心率的求解,考查學生的計算能力,是中檔題.6.C【解析】
由題意得,可求得,再根據(jù)共軛復數(shù)的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.本題考查復數(shù)的幾何表示和共軛復數(shù)的定義,屬于基礎題.7.D【解析】
由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因為當時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數(shù)的最小正周期,則,所以,當時,,所以是函數(shù)的一條對稱軸,故選:D本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對稱性.8.A【解析】
所求的分母特征,利用變形構造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當且僅當時取等號,故選:.本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關鍵.(1)拼湊的技巧,以整式為基礎,注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(3)拆項、添項應注意檢驗利用基本不等式的前提.9.C【解析】
根據(jù)程序框圖程序運算即可得.【詳解】依程序運算可得:,故選:C本題主要考查了程序框圖的計算,解題的關鍵是理解程序框圖運行的過程.10.B【解析】
先將三個數(shù)通過指數(shù),對數(shù)運算變形,再判斷.【詳解】因為,,所以,故選:B.本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.11.A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.12.B【解析】
滿足(1)(2)的函數(shù)是偶函數(shù)且值域關于原點對稱,分別對所給函數(shù)進行驗證.【詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質(zhì),考查學生邏輯推理與分析能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.>【解析】
根據(jù)方差計算公式,計算出的表達式,由此利用差比較法,比較出兩者的大小關系.【詳解】,故.,.要比較的大小,只需比較與,兩者作差并化簡得①,由于為互不相等的正實數(shù),故,也即,也即.故答案為:本小題主要考查隨機變量期望和方差的計算,考查差比較法比較大小,考查運算求解能力,屬于難題.14.【解析】
由題意可設橢圓方程為:∵短軸的一個端點與兩焦點組成一正三角形,焦點在軸上∴又,∴,∴橢圓的方程為,故答案為.考點:橢圓的標準方程,解三角形以及解方程組的相關知識.15.7【解析】
由題,得,令,即可得到本題答案.【詳解】由題,得,令,得x的系數(shù).故答案為:7本題主要考查二項式定理的應用,屬基礎題.16.【解析】
由題意可在定義域上有四個不同的解等價于關于原點對稱的函數(shù)與函數(shù)的圖象有兩個交點,運用參變分離和構造函數(shù),進而借助導數(shù)分析單調(diào)性與極值,畫出函數(shù)圖象,即可得到所求范圍.【詳解】已知定義在上的函數(shù)若在定義域上有四個不同的解等價于關于原點對稱的函數(shù)與函數(shù)f(x)=lnx-x(x>0)的圖象有兩個交點,聯(lián)立可得有兩個解,即可設,則,進而且不恒為零,可得在單調(diào)遞增.由可得時,單調(diào)遞減;時,單調(diào)遞增,即在處取得極小值且為作出的圖象,可得時,有兩個解.故答案為:本題考查利用利用導數(shù)解決方程的根的問題,還考查了等價轉(zhuǎn)化思想與函數(shù)對稱性的應用,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)利用正弦定理,轉(zhuǎn)化為,分析運算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.18.(1)所抽取的人中得分落在組和內(nèi)的人數(shù)分別為人、人;(2)分布列見解析,.【解析】
(1)將分別乘以區(qū)間、對應的矩形面積可得出結果;(2)由題可知,隨機變量的可能取值為、、,利用超幾何分布概率公式計算出隨機變量在不同取值下的概率,可得出隨機變量的分布列,并由此計算出隨機變量的數(shù)學期望值.【詳解】(1)由題意知,所抽取的人中得分落在組的人數(shù)有(人),得分落在組的人數(shù)有(人).因此,所抽取的人中得分落在組的人數(shù)有人,得分落在組的人數(shù)有人;(2)由題意可知,隨機變量的所有可能取值為、、,,,,所以,隨機變量的分布列為:所以,隨機變量的期望為.本題考查利用頻率分布直方圖計算頻數(shù),同時也考查了離散型隨機變量分布列與數(shù)學期望的求解,考查計算能力,屬于基礎題.19.(1)見解析(2)見解析【解析】
(1)根據(jù)的導函數(shù)進行分類討論單調(diào)性(2)欲證,只需證,構造函數(shù),證明,這時需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域為,,①當時,由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;②當時,由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;③當時,,所以在上單調(diào)遞增;④當時,由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當變化時,,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因為,所以,所以.即,所以當時,成立.考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.20.(1)證明見解析;(2).【解析】
(1)將代入函數(shù)解析式可得,構造函數(shù),求得并令,由導函數(shù)符號判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數(shù)求導,變形后討論當時的函數(shù)單調(diào)情況:當時,可知滿足題意;將不等式化簡后構造函數(shù),利用導函數(shù)求得極值點與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗的符號,即可確定整數(shù)的最大值;當時不滿足題意,因為求整數(shù)的最大值,所以時無需再討論.【詳解】(1)證明:當時代入可得,令,,則,令解得,當時,所以在單調(diào)遞增,當時,所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時,當時,,則在時單調(diào)遞減,所以,即當時成立;所以此時需滿足的整數(shù)解即可,將不等式化簡可得,令則令解得,當時,即在內(nèi)單調(diào)遞減,當時,即在內(nèi)單調(diào)遞增,所以當時取得最小值,則,,,所以此時滿足的整數(shù)的最大值為;當時,在時,此時,與題意矛盾,所以不成立.因為求整數(shù)的最大值,所以時無需再討論,綜上所述,當時,整數(shù)的最大值為.本題考查了導數(shù)在證明不等式中的應用,導數(shù)與函數(shù)單調(diào)性、極值、最值的關系和應用,構造函數(shù)法求最值,并判斷函數(shù)值法符號,綜合性強,屬于難題.21.證明見解析【解析】
由已知,易得,所以利用柯西不等式和基本不等式即可證明.【詳解】因為凸邊形的面積為1,所以,所以(由柯西不等式得)(由均值不等式得)本題考查利用柯西不等式、基本不等式證明不等式的問題,考查學生對不等式靈活運用的能力,是一道容易題.22.(1),中位
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教育型旅行產(chǎn)品設計及運營模式研究
- 提升旅游業(yè)中的客戶服務體驗研究
- 數(shù)控線切割機導輪行業(yè)深度研究分析報告(2024-2030版)
- 中國青磚行業(yè)競爭格局及投資戰(zhàn)略規(guī)劃研究報告
- 雙高背景下高職中外合作辦學的教育發(fā)展現(xiàn)狀分析
- 如何利用信息技術提高幼兒語言學習的興趣與效率
- 拼多多商家如何利用社交媒體提升用戶體驗
- 建筑行業(yè)中的數(shù)據(jù)分析應用
- 跨國社交媒體傳播策略-洞察闡釋
- 教育信息化與智慧教室的融合發(fā)展
- 2025年高考河北卷物理高考真題+解析(參考版)
- 中醫(yī)老人保健講座課件
- -2024-2025學年統(tǒng)編版語文二年級下冊 期末復習練習題(含答案)
- 2025至2030中國室內(nèi)滑雪場行業(yè)項目調(diào)研及市場前景預測評估報告
- 2025四川綿陽市平武縣興幫農(nóng)業(yè)發(fā)展集團有限公司招聘10人筆試參考題庫附帶答案詳解
- 西南林業(yè)大學《算法分析與設計》2023-2024學年第二學期期末試卷
- 征集和招錄人員政治考核表
- 年中國鸚鵡養(yǎng)殖市場發(fā)展策略及投資潛力可行性預測報告
- 2025年施工企業(yè)工作總結(7篇)
- 疏通吸污車租賃合同協(xié)議
- 學習領悟在慶祝中華全國總工會成立100周年大會上重要講話心得體會
評論
0/150
提交評論