安陽市洹北中學2025屆高三下學期期末統一模擬考試數學試題試卷_第1頁
安陽市洹北中學2025屆高三下學期期末統一模擬考試數學試題試卷_第2頁
安陽市洹北中學2025屆高三下學期期末統一模擬考試數學試題試卷_第3頁
安陽市洹北中學2025屆高三下學期期末統一模擬考試數學試題試卷_第4頁
安陽市洹北中學2025屆高三下學期期末統一模擬考試數學試題試卷_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安陽市洹北中學2025屆高三下學期期末統一模擬考試數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若均為任意實數,且,則的最小值為()A. B. C. D.2.已知為拋物線的焦點,點在拋物線上,且,過點的動直線與拋物線交于兩點,為坐標原點,拋物線的準線與軸的交點為.給出下列四個命題:①在拋物線上滿足條件的點僅有一個;②若是拋物線準線上一動點,則的最小值為;③無論過點的直線在什么位置,總有;④若點在拋物線準線上的射影為,則三點在同一條直線上.其中所有正確命題的個數為()A.1 B.2 C.3 D.43.已知,其中是虛數單位,則對應的點的坐標為()A. B. C. D.4.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.5.設,是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數為()A. B. C. D.6.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數的取值范圍為A. B. C. D.7.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.8.已知,,,則的大小關系為()A. B. C. D.9.執行下面的程序框圖,則輸出的值為()A. B. C. D.10.執行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.11.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.9012.已知雙曲線:,,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內角的對邊分別是,若,,則____.14.已知三棱錐的四個頂點都在球的球面上,,則球的表面積為__________.15.正方形的邊長為2,圓內切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.16.若變量,滿足約束條件則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知直線l的參數方程為(t為參數),在以坐標原點O為極點,x軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線C的極坐標方程是.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于兩點A,B,求線段的長.18.(12分)某調查機構對某校學生做了一個是否同意生“二孩”抽樣調查,該調查機構從該校隨機抽查了100名不同性別的學生,調查統計他們是同意父母生“二孩”還是反對父母生“二孩”,現已得知100人中同意父母生“二孩”占60%,統計情況如下表:同意不同意合計男生a5女生40d合計100(1)求a,d的值,根據以上數據,能否有97.5%的把握認為是否同意父母生“二孩”與性別有關?請說明理由;(2)將上述調查所得的頻率視為概率,現在從所有學生中,采用隨機抽樣的方法抽取4位學生進行長期跟蹤調查,記被抽取的4位學生中持“同意”態度的人數為X,求X的分布列及數學期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63519.(12分)已知數列的前項和為,且點在函數的圖像上;(1)求數列的通項公式;(2)設數列滿足:,,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數的取值范圍;20.(12分)已知某種細菌的適宜生長溫度為12℃~27℃,為了研究該種細菌的繁殖數量(單位:個)隨溫度(單位:℃)變化的規律,收集數據如下:溫度/℃14161820222426繁殖數量/個2530385066120218對數據進行初步處理后,得到了一些統計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關于的散點圖,并根據散點圖判斷與哪一個更適合作為該種細菌的繁殖數量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(1)的判斷結果及表格數據,建立關于的回歸方程(結果精確到0.1);(3)當溫度為27℃時,該種細菌的繁殖數量的預報值為多少?參考公式:對于一組數據,其回歸直線的斜率和截距的最小二成估計分別為,,參考數據:.21.(12分)已知函數(為常數)(Ⅰ)當時,求的單調區間;(Ⅱ)若為增函數,求實數的取值范圍.22.(10分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點,平面,,為線段上一點(不與端點重合).(1)若,(ⅰ)求證:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實數滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結合圖形,可以斷定那個點應該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結果.【詳解】由題意可得,其結果應為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結果為,故選D.【點睛】本題考查函數在一點處切線斜率的應用,考查圓的程,兩條直線垂直的斜率關系,屬中檔題.2.C【解析】

①:由拋物線的定義可知,從而可求的坐標;②:做關于準線的對稱點為,通過分析可知當三點共線時取最小值,由兩點間的距離公式,可求此時最小值;③:設出直線方程,聯立直線與拋物線方程,結合韋達定理,可知焦點坐標的關系,進而可求,從而可判斷出的關系;④:計算直線的斜率之差,可得兩直線斜率相等,進而可判斷三點在同一條直線上.【詳解】解:對于①,設,由拋物線的方程得,則,故,所以或,所以滿足條件的點有二個,故①不正確;對于②,不妨設,則關于準線的對稱點為,故,當且僅當三點共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設方程為:,設與拋物線的交點坐標為,聯立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補,所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點在同一條直線上,故④正確.故選:C.【點睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關系,考查了拋物線的性質,考查了直線方程,考查了兩點的斜率公式.本題的難點在于第二個命題,結合初中的“飲馬問題”分析出何時取最小值.3.C【解析】

利用復數相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.【點睛】本題考查復數的代數表示法及其幾何意義,考查復數相等的條件,是基礎題.4.D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質,直線與圓相切的性質,離心率的求法,屬于中檔題.5.C【解析】

利用線線、線面、面面相應的判定與性質來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質定理,是一道基礎題.6.C【解析】

因為,,所以根據正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數的取值范圍為,故選C.7.B【解析】

求得直線的方程,聯立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.8.A【解析】

根據指數函數與對數函數的單調性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數,所以所以,故選:A.【點睛】本題主要考查了指數函數、對數函數的單調性,利用單調性比較大小,屬于中檔題.9.D【解析】

根據框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,

,,,,,結束循環,故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環結構,條件分支結構,屬于中檔題.10.B【解析】

模擬程序框圖運行分析即得解.【詳解】;;.所以①處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.11.A【解析】

利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.12.D【解析】

由|AF2|=3|BF2|,可得.設直線l的方程x=my+,m>0,設,,即y1=﹣3y2①,聯立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F1,F2為左、右焦點,則F2(,0),設直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯立①②得,聯立①③得,,即:,,解得:,直線的斜率為,故選D.【點睛】本題考查直線與雙曲線的位置關系,考查韋達定理的運用,考查向量知識,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由,根據正弦定理“邊化角”,可得,根據余弦定理,結合已知聯立方程組,即可求得角.【詳解】根據正弦定理:可得根據余弦定理:由已知可得:故可聯立方程:解得:.由故答案為:.【點睛】本題主要考查了求三角形的一個內角,解題關鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.14.【解析】

如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,計算得到,得到答案.【詳解】如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點睛】本題考查了三棱錐的外接球問題,意在考查學生的計算能力和空間想象能力,將三棱錐補成長方體是解題的關鍵.15.【解析】

根據向量關系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數量積的取值范圍,涉及基本運算,關鍵在于恰當地對向量進行轉換,便于計算解題.16.7【解析】

畫出不等式組表示的平面區域,數形結合,即可容易求得目標函數的最大值.【詳解】作出不等式組所表示的平面區域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區域、線性規劃,主要考查推理論證能力以及數形結合思想,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)l:,C:;(2)【解析】

(1)直接利用轉換關系,把參數方程直角坐標方程和極坐標方程之間進行轉換;

(2)由(1)可得曲線是圓,求出圓心坐標及半徑,再求得圓心到直線的距離,即可求得的長.【詳解】(1)由題意可得直線:,由,得,即,所以曲線C:.(2)由(1)知,圓,半徑.∴圓心到直線的距離為:.∴【點睛】本題考查直線的普通坐標方程、曲線的直角坐標方程的求法,考查弦長的求法、運算求解能力,是中檔題.18.(1),有97.5%的把握認為是否同意父母生“二孩”與“性別”有關;(2)詳見解析.【解析】

(1)根據表格及同意父母生“二孩”占60%可求出,,根據公式計算結果即可確定有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)由題意可知X服從二項分布,利用公式計算概率及期望即可.【詳解】(1)因為100人中同意父母生“二孩”占60%,所以,文(2)由列聯表可得而所以有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)①由題知持“同意”態度的學生的頻率為,即從學生中任意抽取到一名持“同意”態度的學生的概率為.由于總體容量很大,故X服從二項分布,即從而X的分布列為X01234X的數學期望為【點睛】本題主要考查了相關性檢驗、二項分布,屬于中檔題.19.(1)(2)當n為偶數時,;當n為奇數時,.(3)【解析】

(1)根據,討論與兩種情況,即可求得數列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當n為奇數或偶數時的通項公式.也可利用數學歸納法,先猜想出通項公式,再用數學歸納法證明.(3)分類討論,當n為奇數或偶數時,分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當時,,當時,也滿足上式.所以.(2)解法一:由(1)可知,即.當時,,①當時,,所以,②當時,,③當時,,所以,④……當時,n為偶數當時,n為偶數所以以上個式子相加,得.又,所以當n為偶數時,.同理,當n為奇數時,,所以,當n為奇數時,.解法二:猜測:當n為奇數時,.猜測:當n為偶數時,.以下用數學歸納法證明:,命題成立;假設當時,命題成立;當n為奇數時,,當時,n為偶數,由得故,時,命題也成立.綜上可知,當n為奇數時同理,當n為偶數時,命題仍成立.(3)由(2)可知.①當n為偶數時,,所以隨n的增大而減小從而當n為偶數時,的最大值是.②當n為奇數時,,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對于任意的,不等式恒成立,只需,故實數的取值范圍是.【點睛】本題考查了累加法求數列通項公式的應用,分類討論奇偶項的通項公式及求和方法,數學歸納法證明數列的應用,數列的單調性及參數的取值范圍,屬于難題.20.(1)作圖見解析;更適合(2)(3)預報值為245【解析】

(1)由散點圖即可得到答案;(2)把兩邊取自然對數,得,由計算得到,再將代入可得,最終求得,即;(3)將代入中計算即可.【詳解】解:(1)繪出關于的散點圖,如圖所示:由散點圖可知,更適合作為該種細菌的繁殖數量關于的回歸方程類型;(2)把兩邊取自然對數,得,即,由.∴,則關于的回歸方程為;(3)當時,計算可得;即溫度為27℃時,該種細菌的繁殖數量的預報值為245.【點睛】本題考查求非線性回歸方程及其應用的問題,考查學生數據處理能力及運算能力,是一道中檔題.21.(Ⅰ)單調遞增區間為,;單調遞減區間為;(Ⅱ).【解析】

(Ⅰ)對函數進行求導,利用導數判斷函數的單調性即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論