




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆寧夏銀川市銀川一中高三下學期期中考試數學試題版含答案請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集,集合,.則集合等于()A. B. C. D.2.在展開式中的常數項為A.1 B.2 C.3 D.73.等比數列的各項均為正數,且,則()A.12 B.10 C.8 D.4.設,其中a,b是實數,則()A.1 B.2 C. D.5.已知隨機變量服從正態分布,,()A. B. C. D.6.已知是虛數單位,若,則()A. B.2 C. D.37.設橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關于原點對稱的兩點,直線BF交直線AC于M,且M為AC的中點,則橢圓E的離心率是()A. B. C. D.8.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)9.已知的面積是,,,則()A.5 B.或1 C.5或1 D.10.《算數書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現存最早的有系統的數學典籍.其中記載有求“囷蓋”的術:“置如其周,令相承也.又以高乘之,三十六成一”.該術相當于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當于將圓錐體積公式中的圓周率近似取為()A. B. C. D.11.在我國傳統文化“五行”中,有“金、木、水、火、土”五個物質類別,在五者之間,有一種“相生”的關系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關系的概率是()A.0.2 B.0.5 C.0.4 D.0.812.已知,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設第一象限內的點(x,y)滿足約束條件,若目標函數z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_____.14.已知函數f(x)=若關于x的方程f(x)=kx有兩個不同的實根,則實數k的取值范圍是________.15.已知復數對應的點位于第二象限,則實數的范圍為______.16.已知向量滿足,,則______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數,以坐標原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的普通方程;(2)設射線與曲線交于不同于極點的點,與曲線交于不同于極點的點,求線段的長.18.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標準方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設P為橢圓上一點,且OM+ON=t19.(12分)已知,,分別為內角,,的對邊,且.(1)證明:;(2)若的面積,,求角.20.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.21.(12分)設函數.(1)解不等式;(2)記的最大值為,若實數、、滿足,求證:.22.(10分)的內角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數不等式,是一道容易題.2、D【解析】
求出展開項中的常數項及含的項,問題得解。【詳解】展開項中的常數項及含的項分別為:,,所以展開式中的常數項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉化思想,考查計算能力,屬于基礎題。3、B【解析】
由等比數列的性質求得,再由對數運算法則可得結論.【詳解】∵數列是等比數列,∴,,∴.故選:B.【點睛】本題考查等比數列的性質,考查對數的運算法則,掌握等比數列的性質是解題關鍵.4、D【解析】
根據復數相等,可得,然后根據復數模的計算,可得結果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數模的計算,考驗計算,屬基礎題.5、B【解析】
利用正態分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態分布密度曲線的對稱性求概率,屬于基礎題.6、A【解析】
直接將兩邊同時乘以求出復數,再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數的運算及其模的求法,是基礎題.7、C【解析】
連接,為的中位線,從而,且,進而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關于原點對稱的兩點,不妨設B在第二象限,直線BF交直線AC于M,且M為AC的中點為的中位線,,且,,解得橢圓的離心率.故選:C【點睛】本題考查了橢圓的幾何性質,考查了運算求解能力,屬于基礎題.8、C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.9、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.10、C【解析】
將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數學問題考查圓錐體積計算的實際應用,考查學生的運算求解能力、創新能力.11、B【解析】
利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎題.12、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】不等式表示的平面區域陰影部分,當直線ax+by=z(a>0,b>0)過直線x?y+2=0與直線2x?y?6=0的交點(8,10)時,目標函數z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當且僅當時取等號,則的最小值為.14、【解析】由圖可知,當直線y=kx在直線OA與x軸(不含它們)之間時,y=kx與y=f(x)的圖像有兩個不同交點,即方程有兩個不相同的實根.15、【解析】
由復數對應的點,在第二象限,得,且,從而求出實數的范圍.【詳解】解:∵復數對應的點位于第二象限,∴,且,∴,故答案為:.【點睛】本題主要考查復數與復平面內對應點之間的關系,解不等式,且是解題的關鍵,屬于基礎題.16、1【解析】
首先根據向量的數量積的運算律求出,再根據計算可得;【詳解】解:因為,所以又所以所以故答案為:【點睛】本題考查平面向量的數量積的運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
曲線的參數方程轉換為直角坐標方程為.再用極直互化公式求解,曲線的極坐標方程用極直互化公式轉換為直角坐標方程.射線與曲線的極坐標方程聯解求出,射線與曲線的極坐標方程聯解求出,再用得解【詳解】解:曲線的參數方程為(為參數,轉換為直角坐標方程為.把,代入得:曲線的極坐標方程為.轉換為直角坐標方程為.設射線與曲線交于不同于極點的點,所以,解得.與曲線交于不同于極點的點,所以,解得,所以【點睛】本題考查參數方程、極坐標方程直角坐標方程相互轉換及極坐標下利用和的幾何意義求線段的長.(1)直角坐標方程化為極坐標方程只需將直角坐標方程中的分別用,代替即可得到相應極坐標方程.參數方程化為極坐標方程必須先化成直角坐標方程再轉化為極坐標方程.(2)直接求解,能達到化繁為簡的解題目的;如果幾何關系不容易通過極坐標表示時,可以先化為直角坐標方程,將不熟悉的問題轉化為熟悉的問題加以解決.18、(1)x24+【解析】試題分析:本題主要考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標準方程;第二問,討論直線MN的斜率是否存在,當直線MN的斜率存在時,直線方程與橢圓方程聯立,消參,利用韋達定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標準方程為x2(2)由題意知,當直線MN斜率存在時,設直線方程為y=k(x-1),M(x聯立方程x24+因為直線與橢圓交于兩點,所以Δ=16k∴x又∵OM∴因為點P在橢圓x24+即2k又∵|OM即|NM|<4化簡得:13k4-5k2∵t2=1-當直線MN的斜率不存在時,M(1,??62∴t∈[-1,??考點:橢圓的標準方程及其幾何性質、直線與橢圓的位置關系.19、(1)見解析;(2)【解析】
(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結論,得到,利用三角形的面積公式列方程,由此求得,進而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉化的數學思想方法,考查運算求解能力,屬于中檔題.20、(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和積轉化可求,利用基本不等式可將轉化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當時取等號.故,且當時取等號.所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點定位】基本不等式.21、(1)(2)證明見解析【解析】
(1)采用零點分段法:、、,由此求解出不等式的解集;(2)先根據絕對值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【詳解】(1)當時,不等式為,解得當時,不等式為,解得當時,不等式為,解得∴原不等式的解集為(2)當且僅當即時取等號,∴,∴∵,∴,∴(當且僅當時取“”)同理可得,∴∴(當且僅當時取“”)【點睛】本題考查絕對值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見的絕對值不等式解法:零點分段法、圖象法、幾何意義法;(2)利用基本不等式完成證明時,注意說明取等號的條件.22、(1)(2)【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設計公司晉升管理制度
- 設計裝修公司管理制度
- 診所職工健康管理制度
- 試制車間安全管理制度
- 財務銷售倉庫管理制度
- 財富公司運營管理制度
- 貨代公司安全管理制度
- 貨物現場包裝管理制度
- 貨站疫情防控管理制度
- 2025年中國定制首飾行業市場全景分析及前景機遇研判報告
- T∕CADERM 3041-2020 擴展的創傷重點超聲評估規范
- 蘇教版四年級數學下冊試卷(全套)
- 五年級北師大版英語下學期語法填空易錯專項練習題
- 100道結構力學彎矩圖
- GRACE評分表教學提綱
- 機械連接扭矩檢查記錄
- 職場性格25PF測試題
- 水利水電工程磚砌體單元評定表
- GB_T 24359-2021 第三方物流服務質量及測評(高清-現行)
- 院士專家工作站管理辦法
- 工程造價咨詢服務收費標準--魯價費發〔2007〕205號
評論
0/150
提交評論