2025屆北京朝陽陳經綸中學第二學期期末高三數學試題_第1頁
2025屆北京朝陽陳經綸中學第二學期期末高三數學試題_第2頁
2025屆北京朝陽陳經綸中學第二學期期末高三數學試題_第3頁
2025屆北京朝陽陳經綸中學第二學期期末高三數學試題_第4頁
2025屆北京朝陽陳經綸中學第二學期期末高三數學試題_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆北京朝陽陳經綸中學第二學期期末高三數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與曲線相切,則()A.3 B. C.2 D.2.方程在區間內的所有解之和等于()A.4 B.6 C.8 D.103.已知等差數列的前13項和為52,則()A.256 B.-256 C.32 D.-324.定義在上的奇函數滿足,若,,則()A. B.0 C.1 D.25.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直6.已知全集,集合,則()A. B. C. D.7.已知排球發球考試規則:每位考生最多可發球三次,若發球成功,則停止發球,否則一直發到次結束為止.某考生一次發球成功的概率為,發球次數為,若的數學期望,則的取值范圍為()A. B. C. D.8.復數().A. B. C. D.9.已知實數、滿足約束條件,則的最大值為()A. B. C. D.10.雙曲線的漸近線方程為()A. B.C. D.11.若復數滿足,則(其中為虛數單位)的最大值為()A.1 B.2 C.3 D.412.2019年10月17日是我國第6個“扶貧日”,某醫院開展扶貧日“送醫下鄉”醫療義診活動,現有五名醫生被分配到四所不同的鄉鎮醫院中,醫生甲被指定分配到醫院,醫生乙只能分配到醫院或醫院,醫生丙不能分配到醫生甲、乙所在的醫院,其他兩名醫生分配到哪所醫院都可以,若每所醫院至少分配一名醫生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種二、填空題:本題共4小題,每小題5分,共20分。13.(5分)有一道描述有關等差與等比數列的問題:有四個和尚在做法事之前按身高從低到高站成一列,已知前三個和尚的身高依次成等差數列,后三個和尚的身高依次成等比數列,且前三個和尚的身高之和為cm,中間兩個和尚的身高之和為cm,則最高的和尚的身高是____________cm.14.已知,為正實數,且,則的最小值為________________.15.已知函數()在區間上的值小于0恒成立,則的取值范圍是________.16.已知,則_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知向量,.(1)求的最小正周期;(2)若的內角的對邊分別為,且,求的面積.18.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.19.(12分)已知函數.(1)若,證明:當時,;(2)若在只有一個零點,求的值.20.(12分)在中,內角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.21.(12分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.(Ⅰ)求的極坐標方程和曲線的參數方程;(Ⅱ)求曲線的內接矩形的周長的最大值.22.(10分)已知函數.(1)當時,求函數的值域;(2)的角的對邊分別為且,,求邊上的高的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數的問題,涉及到的知識點有導數的幾何意義,直線方程的點斜式,屬于簡單題目.2.C【解析】

畫出函數和的圖像,和均關于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數和的圖像,易知:和均關于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.【點睛】本題考查了方程解的問題,意在考查學生的計算能力和應用能力,確定函數關于點中心對稱是解題的關鍵.3.A【解析】

利用等差數列的求和公式及等差數列的性質可以求得結果.【詳解】由,,得.選A.【點睛】本題主要考查等差數列的求和公式及等差數列的性質,等差數列的等和性應用能快速求得結果.4.C【解析】

首先判斷出是周期為的周期函數,由此求得所求表達式的值.【詳解】由已知為奇函數,得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數的奇偶性和周期性,屬于基礎題.5.D【解析】

根據異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據異面直線的性質知,過只有唯一平面與平行,故正確.C.根據過一點有且只有一個平面與已知直線垂直知,故正確.D.根據異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.6.D【解析】

根據函數定義域的求解方法可分別求得集合,由補集和交集定義可求得結果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數定義域的求解,屬于基礎題.7.A【解析】

根據題意,分別求出再根據離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發球分為兩種情況:三次都不成功、第三次成功8.A【解析】試題分析:,故選A.【考點】復數運算【名師點睛】復數代數形式的四則運算的法則是進行復數運算的理論依據,加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數化.9.C【解析】

作出不等式組表示的平面區域,作出目標函數對應的直線,結合圖象知當直線過點時,取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內部,如下圖表示:當目標函數經過點時,取得最大值,最大值為.故選:C.【點睛】本題主要考查線性規劃等基礎知識;考查運算求解能力,數形結合思想,應用意識,屬于中檔題.10.A【解析】

將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質的應用.11.B【解析】

根據復數的幾何意義可知復數對應的點在以原點為圓心,1為半徑的圓上,再根據復數的幾何意義即可確定,即可得的最大值.【詳解】由知,復數對應的點在以原點為圓心,1為半徑的圓上,表示復數對應的點與點間的距離,又復數對應的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復數模的定義及其幾何意義應用,屬于基礎題.12.B【解析】

分兩類:一類是醫院A只分配1人,另一類是醫院A分配2人,分別計算出兩類的分配種數,再由加法原理即可得到答案.【詳解】根據醫院A的情況分兩類:第一類:若醫院A只分配1人,則乙必在醫院B,當醫院B只有1人,則共有種不同分配方案,當醫院B有2人,則共有種不同分配方案,所以當醫院A只分配1人時,共有種不同分配方案;第二類:若醫院A分配2人,當乙在醫院A時,共有種不同分配方案,當乙不在A醫院,在B醫院時,共有種不同分配方案,所以當醫院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

依題意設前三個和尚的身高依次為,第四個(最高)和尚的身高為,則,解得,又,解得,又因為成等比數列,則公比,故.14.【解析】

由,為正實數,且,可知,于是,可得,再利用基本不等式即可得出結果.【詳解】解:,為正實數,且,可知,,.當且僅當時取等號.的最小值為.故答案為:.【點睛】本題考查了基本不等式的性質應用,恰當變形是解題的關鍵,屬于中檔題.15.【解析】

首先根據的取值范圍,求得的取值范圍,由此求得函數的值域,結合區間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點睛】本小題主要考查三角函數值域的求法,考查三角函數值恒小于零的問題的求解,考查化歸與轉化的數學思想方法,屬于中檔題.16.【解析】

化簡得,利用周期即可求出答案.【詳解】解:,∴函數的最小正周期為6,∴,,故答案為:.【點睛】本題主要考查三角函數的性質的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)或【解析】

(1)利用平面向量數量積的坐標運算可得,利用正弦函數的周期性即可求解;(2)由(1)可求,結合范圍,可求的值,由余弦定理可求的值,進而根據三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當時,由余弦定理得即,解得.此時.當時,由余弦定理得.即,解得.此時.【點睛】本題主要考查了平面向量數量積的坐標運算、正弦函數的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應用,考查了轉化思想和分類討論思想,屬于基礎題.18.(1)(2)或【解析】

(1)根據題意計算得到,,得到橢圓方程.(2)設,聯立方程得到,根據,計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設,由消得,所以,因為,所以.因為點在以線段為直徑的圓上,所以,即,所以直線的方程或.【點睛】本題考查了橢圓方程,根據直線和橢圓的位置關系求直線,將題目轉化為是解題的關鍵.19.(1)見解析;(2)【解析】

分析:(1)先構造函數,再求導函數,根據導函數不大于零得函數單調遞減,最后根據單調性證得不等式;(2)研究零點,等價研究的零點,先求導數:,這里產生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于.設函數,則.當時,,所以在單調遞減.而,故當時,,即.(2)設函數.在只有一個零點當且僅當在只有一個零點.(i)當時,,沒有零點;(ii)當時,.當時,;當時,.所以在單調遞減,在單調遞增.故是在的最小值.①若,即,在沒有零點;②若,即,在只有一個零點;③若,即,由于,所以在有一個零點,由(1)知,當時,,所以.故在有一個零點,因此在有兩個零點.綜上,在只有一個零點時,.點睛:利用函數零點的情況求參數值或取值范圍的方法(1)利用零點存在的判定定理構建不等式求解.(2)分離參數后轉化為函數的值域(最值)問題求解.(3)轉化為兩熟悉的函數圖象的上、下關系問題,從而構建不等式求解.20.(1);(2).【解析】

(1)先由余弦定理求得,再由正弦定理計算即可得到所求值;

(2)運用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點睛】本題考查正弦定理、余弦定理和面積公式的運用,以及三角函數的恒等變換,考查化簡整理的運算能力,屬于中檔題.21.(Ⅰ)曲線的參數方程為:(為參數);的極坐標方程為;(Ⅱ)16.【解析】

(

I

)直接利用轉換關系,把參數方程、極坐標方程和直角坐標方程之間進行轉換;(

II

)利用三角函數關系式的恒等變換和正弦型函數的性質的應用,即可求出結果.【詳解】(Ⅰ)由題意:曲線的直角坐標方程為:,所以曲線的參數方程為(為參數),因為直線的直角坐標方程為:,又因曲線的左焦點為,將其代入中,得到,所以的極坐標方程為.(Ⅱ)設橢圓的內接矩形的頂點為,,,,所以橢圓的內接矩形的周長為:,所以當時,即時,橢圓的內接矩形的周長取得最大值16.【點睛】本題考查了曲線的參數方程,極坐標方程與普通方程間的互化,三角函數關系式的恒等變換,正弦型函數的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論