江蘇省南通市重點中學2025屆高三下學期綜合模擬數學試題_第1頁
江蘇省南通市重點中學2025屆高三下學期綜合模擬數學試題_第2頁
江蘇省南通市重點中學2025屆高三下學期綜合模擬數學試題_第3頁
江蘇省南通市重點中學2025屆高三下學期綜合模擬數學試題_第4頁
江蘇省南通市重點中學2025屆高三下學期綜合模擬數學試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南通市重點中學2025屆高三下學期綜合模擬數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.2.兩圓和相外切,且,則的最大值為()A. B.9 C. D.13.某中學2019年的高考考生人數是2016年高考考生人數的1.2倍,為了更好地對比該校考生的升學情況,統計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結論正確的是().A.與2016年相比,2019年不上線的人數有所增加B.與2016年相比,2019年一本達線人數減少C.與2016年相比,2019年二本達線人數增加了0.3倍D.2016年與2019年藝體達線人數相同4.設過定點的直線與橢圓:交于不同的兩點,,若原點在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.5.已知函數的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.6.已知函數,其圖象關于直線對稱,為了得到函數的圖象,只需將函數的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變7.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.8.設集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.函數的大致圖象為A. B.C. D.10.已知函數,,若存在實數,使成立,則正數的取值范圍為()A. B. C. D.11.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.12.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線,點,在曲線上,且以為直徑的圓的方程是.則_______.14.下圖是一個算法的流程圖,則輸出的x的值為_______.15.已知過點的直線與函數的圖象交于、兩點,點在線段上,過作軸的平行線交函數的圖象于點,當∥軸,點的橫坐標是16.設滿足約束條件且的最小值為7,則=_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)求函數的單調遞增區間(2)記函數的圖象為曲線,設點是曲線上不同兩點,如果在曲線上存在點,使得①;②曲線在點M處的切線平行于直線AB,則稱函數存在“中值和諧切線”,當時,函數是否存在“中值和諧切線”請說明理由18.(12分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設平面與交于點,求證:為的中點.19.(12分)已知奇函數的定義域為,且當時,.(1)求函數的解析式;(2)記函數,若函數有3個零點,求實數的取值范圍.20.(12分)已知函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若不等式對任意實數恒成立,求實數的取值范圍.21.(12分)已知函數.(1)若在處導數相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數的取值范圍.22.(10分)已知直線l的極坐標方程為,圓C的參數方程為(為參數).(1)請分別把直線l和圓C的方程化為直角坐標方程;(2)求直線l被圓截得的弦長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.2、A【解析】

由兩圓相外切,得出,結合二次函數的性質,即可得出答案.【詳解】因為兩圓和相外切所以,即當時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關系求參數,屬于中檔題.3、A【解析】

設2016年高考總人數為x,則2019年高考人數為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設2016年高考總人數為x,則2019年高考人數為,2016年高考不上線人數為,2019年不上線人數為,故A正確;2016年高考一本人數,2019年高考一本人數,故B錯誤;2019年二本達線人數,2016年二本達線人數,增加了倍,故C錯誤;2016年藝體達線人數,2019年藝體達線人數,故D錯誤.故選:A.【點睛】本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統計類的題目.4、D【解析】

設直線:,,,由原點在以為直徑的圓的外部,可得,聯立直線與橢圓方程,結合韋達定理,即可求得答案.【詳解】顯然直線不滿足條件,故可設直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.【點睛】本題解題關鍵是掌握橢圓的基礎知識和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯立方程組,通過韋達定理建立起目標的關系式,考查了分析能力和計算能力,屬于中檔題.5、D【解析】

運用輔助角公式,化簡函數的解析式,由對稱軸的方程,求得的值,得出函數的解析式,集合正弦函數的最值,即可求解,得到答案.【詳解】由題意,函數為輔助角,由于函數的對稱軸的方程為,且,即,解得,所以,又由,所以函數必須取得最大值和最小值,所以可設,,所以,當時,的最小值,故選D.【點睛】本題主要考查了正弦函數的圖象與性質,其中解答中利用三角恒等變換的公式,化簡函數的解析式,合理利用正弦函數的對稱性與最值是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.6、D【解析】

由函數的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數的圖象關于直線對稱,得,即,解得,所以,,故只需將函數的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【點睛】本題考查三角函數的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題7、C【解析】

根據拋物線方程求得點的坐標,根據軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數形結合的數學思想方法,屬于中檔題.8、C【解析】

作出韋恩圖,數形結合,即可得出結論.【詳解】如圖所示,,同時.故選:C.【點睛】本題考查集合關系及充要條件,注意數形結合方法的應用,屬于基礎題.9、A【解析】

因為,所以函數是偶函數,排除B、D,又,排除C,故選A.10、A【解析】

根據實數滿足的等量關系,代入后將方程變形,構造函數,并由導函數求得的最大值;由基本不等式可求得的最小值,結合存在性問題的求法,即可求得正數的取值范圍.【詳解】函數,,由題意得,即,令,∴,∴在上單調遞增,在上單調遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【點睛】本題考查了導數在求函數最值中的應用,由基本不等式求函數的最值,存在性成立問題的解法,屬于中檔題.11、D【解析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.12、D【解析】

取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設所在直線方程為設?點坐標分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯立直線與的方程,由,利用弦長公式即可求解.【詳解】因為是圓的直徑,必過圓心點,設所在直線方程為設?點坐標分別為,,都在上,故兩式相減,可得(因為是的中點),即聯立直線與的方程:又,即,即又因為,則有即∴.故答案為:【點睛】本題考查了直線與圓錐曲線的位置關系、弦長公式,考查了學生的計算能力,綜合性比較強,屬于中檔題.14、1【解析】

利用流程圖,逐次進行運算,直到退出循環,得到輸出值.【詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時14>10×1+3,輸出x,故輸出x的值為1.故答案為:.【點睛】本題主要考查程序框圖的識別,“還原現場”是求解這類問題的良方,側重考查邏輯推理的核心素養.15、【解析】

通過設出A點坐標,可得C點坐標,通過∥軸,可得B點坐標,于是再利用可得答案.【詳解】根據題意,可設點,則,由于∥軸,故,代入,可得,即,由于在線段上,故,即,解得.16、3【解析】

根據約束條件畫出可行域,再把目標函數轉化為,對參數a分類討論,當時顯然不滿足題意;當時,直線經過可行域中的點A時,截距最小,即z有最小值,再由最小值為7,得出結果;當時,的截距沒有最小值,即z沒有最小值;當時,的截距沒有最大值,即z沒有最小值,綜上可得出結果.【詳解】根據約束條件畫出可行域如下:由,可得出交點,由可得,當時顯然不滿足題意;當即時,由可行域可知當直線經過可行域中的點A時,截距最小,即z有最小值,即,解得或(舍);當即時,由可行域可知的截距沒有最小值,即z沒有最小值;當即時,根據可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時.故答案為:3.【點睛】本題主要考查線性規劃問題,約束條件和目標函數中都有參數,要對參數進行討論.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)不存在,見解析【解析】

(1)求出函數的導數,通過討論的范圍求出函數的單調區間即可;(2)求出函數的導數,結合導數的幾何意義,再令,轉化為方程有解問題,即可說明.【詳解】(1)函數的定義域為,所以當時,;,所以函數在上單調遞增當時,①當時,函數在上遞增②,顯然無增區間;③當時,,函數在上遞增,綜上當函數在上單調遞增.當時函數在上單調遞增;當時函數無單調遞增區間當時函數在上單調遞增(2)假設函數存在“中值相依切線”設是曲線上不同的兩個點,且則曲線在點處的切線的斜率為,.令,則,單調遞增,,故無解,假設不成立綜上,假設不成立,所以不存在“中值相依切線”【點睛】本題考查了函數的單調性,導數的幾何意義,考查導數的應用以及分類討論和轉化思想,屬于中檔題.18、(1)證明見解析;(2)證明見解析.【解析】

(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線面平行的性質定理即可得到∥,從而獲得證明【詳解】證明:(1)因為平面,平面,所以.因為,所以.又因為,平面,平面,所以平面.又因為平面,所以.(2)因為平面與交于點,所以平面.因為分別為的中點,所以∥.又因為平面,平面,所以∥平面.又因為平面,平面平面,所以∥,又因為是的中點,所以為的中點.【點睛】本題考查線面垂直的判定定理以及線面平行的性質定理,考查學生的邏輯推理能力,是一道容易題.19、(1);(2)【解析】

(1)根據奇函數定義,可知;令則,結合奇函數定義即可求得時的解析式,進而得函數的解析式;(2)根據零點定義,可得,由函數圖像分析可知曲線與直線在第三象限必1個交點,因而需在第一象限有2個交點,將與聯立,由判別式及兩根之和大于0,即可求得的取值范圍.【詳解】(1)因為函數為奇函數,且,故;當時,,,則;故.(2)令,解得,畫出函數關系如下圖所示,要使曲線與直線有3個交點,則2個交點在第一象限,1個交點在第三象限,聯立,化簡可得,令,即,解得,所以實數的取值范圍為.【點睛】本題考查了根據函數奇偶性求解析式,分段函數圖像畫法,由函數零點個數求參數的取值范圍應用,數形結合的應用,屬于中檔題.20、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論