




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省汕頭市蘇灣中學中考四模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣22.一元二次方程的根是()A. B.C. D.3.某校120名學生某一周用于閱讀課外書籍的時間的頻率分布直方圖如圖所示.其中閱讀時間是8~10小時的頻數和頻率分別是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.254.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學記數法表示應為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1055.如圖,小明從A處出發沿北偏東60°方向行走至B處,又沿北偏西20°方向行走至C處,此時需把方向調整到與出發時一致,則方向的調整應是()A.右轉80° B.左轉80° C.右轉100° D.左轉100°6.如圖,將一正方形紙片沿圖(1)、(2)的虛線對折,得到圖(3),然后沿圖(3)中虛線的剪去一個角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.7.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米8.某中學籃球隊12名隊員的年齡如下表:年齡:(歲)13141516人數1542關于這12名隊員的年齡,下列說法錯誤的是()A.眾數是14歲 B.極差是3歲 C.中位數是14.5歲 D.平均數是14.8歲9.如圖是小強用八塊相同的小正方體搭建的一個積木,它的左視圖是()A. B. C. D.10.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F,給出下列四個結論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結論正確的有()A.1個 B.2個 C.3個 D.4個二、填空題(共7小題,每小題3分,滿分21分)11.已知:如圖,AD、BE分別是△ABC的中線和角平分線,AD⊥BE,AD=BE=6,則AC的長等于______.12.如果關于x的方程(m為常數)有兩個相等實數根,那么m=______.13.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當“折痕△BEF”面積最大時,點E的坐標為_________________________.14.如果一個三角形有一條邊上的高等于這條邊的一半,那么我們把這個三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜邊AB=5,則它的周長等于_____.15.將直角邊長為5cm的等腰直角△ABC繞點A逆時針旋轉15°后,得到△AB′C′,則圖中陰影部分的面積是_____cm1.16.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.17.如圖,在扇形OAB中,∠O=60°,OA=4,四邊形OECF是扇形OAB中最大的菱形,其中點E,C,F分別在OA,,OB上,則圖中陰影部分的面積為__________.三、解答題(共7小題,滿分69分)18.(10分)對于平面上兩點A,B,給出如下定義:以點A或B為圓心,AB長為半徑的圓稱為點A,B的“確定圓”.如圖為點A,B的“確定圓”的示意圖.(1)已知點A的坐標為(-1,0),點B的坐標為(3,3),則點A,B的“確定圓”的面積為______;(2)已知點A的坐標為(0,0),若直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,求點B的坐標;(3)已知點A在以P(m,0)為圓心,以1為半徑的圓上,點B在直線上,若要使所有點A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.19.(5分)在傳箴言活動中,某班團支部對該班全體團員在一個月內所發箴言條數的情況進行統計,并繪制成了如圖所示的兩幅統計圖(1)將條形統計圖補充完整;(2)該班團員在這一個月內所發箴言的平均條數是________;(3)如果發了3條箴言的同學中有兩位男同學,發了4條箴言的同學中有三位女同學,現要從發了3條箴言和4條箴言的同學中分別選出一位參加總結會,請你用列表或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.20.(8分)某學校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數量是購買乙種足球數量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;求購買一個甲種足球、一個乙種足球各需多少元;2018年這所學校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學校最多可購買多少個乙種足球?21.(10分)請根據圖中提供的信息,回答下列問題:一個水瓶與一個水杯分別是多少元?甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規定:這兩種商品都打八折;乙商場規定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數)個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)22.(10分)如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙O于點D,交AC于點E,連接AD、BD、CD.(1)求證:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.23.(12分)在國家的宏觀調控下,某市的商品房成交價由去年10月份的14000元/下降到12月份的11340元/.求11、12兩月份平均每月降價的百分率是多少?如果房價繼續回落,按此降價的百分率,你預測到今年2月份該市的商品房成交均價是否會跌破10000元/?請說明理由24.(14分)如圖,在平面直角坐標系中,矩形DOBC的頂點O與坐標原點重合,B、D分別在坐標軸上,點C的坐標為(6,4),反比例函數y=(x>0)的圖象經過線段OC的中點A,交DC于點E,交BC于點F.(1)求反比例函數的解析式;(2)求△OEF的面積;(3)設直線EF的解析式為y=k2x+b,請結合圖象直接寫出不等式k2x+b>的解集.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據扇形面積公式和三角形面積公式計算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補法求圖形的面積,根據圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關鍵.2、D【解析】試題分析:此題考察一元二次方程的解法,觀察發現可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.3、D【解析】分析:根據頻率分布直方圖中的數據信息和被調查學生總數為120進行計算即可作出判斷.詳解:由頻率分布直方圖可知:一周內用于閱讀的時間在8-10小時這組的:頻率:組距=0.125,而組距為2,∴一周內用于閱讀的時間在8-10小時這組的頻率=0.125×2=0.25,又∵被調查學生總數為120人,∴一周內用于閱讀的時間在8-10小時這組的頻數=120×0.25=30.綜上所述,選項D中數據正確.故選D.點睛:本題解題的關鍵有兩點:(1)要看清,縱軸上的數據是“頻率:組距”的值,而不是頻率;(2)要弄清各自的頻數、頻率和總數之間的關系.4、C【解析】試題分析:28000=1.1×1.故選C.考點:科學記數法—表示較大的數.5、A【解析】
60°+20°=80°.由北偏西20°轉向北偏東60°,需要向右轉.故選A.6、D【解析】
本題關鍵是正確分析出所剪時的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內部的矩形與原來的正方形紙片的邊平行,故剪時,虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項.【點睛】本題考查了平面圖形在實際生活中的應用,有良好的空間想象能力過動手能力是解題關鍵.7、C【解析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點:解直角三角形的應用-仰角俯角問題.8、D【解析】分別利用極差以及中位數和眾數以及平均數的求法分別分析得出答案.解:由圖表可得:14歲的有5人,故眾數是14,故選項A正確,不合題意;極差是:16﹣13=3,故選項B正確,不合題意;中位數是:14.5,故選項C正確,不合題意;平均數是:(13+14×5+15×4+16×2)÷12≈14.5,故選項D錯誤,符合題意.故選D.“點睛”此題主要考查了極差以及中位數和眾數以及平均數的求法,正確把握相關定義是解題關鍵.9、D【解析】
左視圖從左往右,2列正方形的個數依次為2,1,依此得出圖形D正確.故選D.【詳解】請在此輸入詳解!10、C【解析】
利用“角邊角”證明△APE和△CPF全等,根據全等三角形的可得AE=CF,再根據等腰直角三角形的定義得到△EFP是等腰直角三角形,根據全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點P是BC的中點,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點睛】本題考查了全等三角形的判定與性質,等腰直角三角形的判定與性質,根據同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關鍵,也是本題的突破點.二、填空題(共7小題,每小題3分,滿分21分)11、9【解析】試題分析:如圖,過點C作CF⊥AD交AD的延長線于點F,可得BE∥CF,易證△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分線且AD⊥BE,BG是公共邊,可證得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=952.考點:全等三角形的判定及性質;相似三角形的判定及性質;勾股定理.12、1【解析】析:本題需先根據已知條件列出關于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m為常數)有兩個相等實數根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案為113、(,2).【解析】
解:如圖,當點B與點D重合時,△BEF面積最大,設BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(,2).故答案為:(,2).【點睛】本題考查翻折變換(折疊問題),利用數形結合思想解題是關鍵.14、5+3或5+5.【解析】
分兩種情況討論:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分別依據勾股定理和三角形的面積公式,即可得到該三角形的周長為5+3或5+5.【詳解】由題意可知,存在以下兩種情況:(1)當一條直角邊是另一條直角邊的一半時,這個直角三角形是半高三角形,此時設較短的直角邊為a,則較長的直角邊為2a,由勾股定理可得:,解得:,∴此時較短的直角邊為,較長的直角邊為,∴此時直角三角形的周長為:;(2)當斜邊上的高是斜邊的一半是,這個直角三角形是半高三角形,此時設兩直角邊分別為x、y,這有題意可得:①,②S△=,∴③,由①+③得:,即,∴,∴此時這個直角三角形的周長為:.綜上所述,這個半高直角三角形的周長為:或.故答案為或.【點睛】(1)讀懂題意,弄清“半高三角形”的含義是解題的基礎;(2)根據題意,若直角三角形是“半高三角形”,則存在兩種情況:①一條直角邊是另一條直角邊的一半;②斜邊上的高是斜邊的一半;解題時這兩種情況都要討論,不要忽略了其中一種.15、【解析】∵等腰直角△ABC繞點A逆時針旋轉15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴陰影部分的面積=×5×tan30°×5=.16、1.【解析】過點B作BE⊥x軸于點E,根據D為OB的中點可知CD是△OBE的中位線,即CD=BE,設A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.17、8π﹣8【解析】
連接EF、OC交于點H,根據正切的概念求出FH,根據菱形的面積公式求出菱形FOEC的面積,根據扇形面積公式求出扇形OAB的面積,計算即可.【詳解】連接EF、OC交于點H,則OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面積=×4×4=8,扇形OAB的面積==8π,則陰影部分的面積為8π﹣8,故答案為8π﹣8.【點睛】本題考查了扇形面積的計算、菱形的性質,熟練掌握扇形的面積公式、菱形的性質、靈活運用銳角三角函數的定義是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)25π;(2)點B的坐標為或;(3)m≤-5或m≥2【解析】
(1)根據勾股定理,可得AB的長,根據圓的面積公式,可得答案;(2)根據確定圓,可得l與⊙A相切,根據圓的面積,可得AB的長為3,根據等腰直角三角形的性質,可得,可得答案;(3)根據圓心與直線垂直時圓心到直線的距離最短,根據確定圓的面積,可得PB的長,再根據30°的直角邊等于斜邊的一半,可得CA的長.【詳解】(1)(1)∵A的坐標為(?1,0),B的坐標為(3,3),∴AB==5,根據題意得點A,B的“確定圓”半徑為5,∴S圓=π×52=25π.故答案為25π;(2)∵直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,∴⊙A的半徑AB=3且直線y=x+b與⊙A相切于點B,如圖,∴AB⊥CD,∠DCA=45°.,①當b>0時,則點B在第二象限.過點B作BE⊥x軸于點E,∵在Rt△BEA中,∠BAE=45°,AB=3,∴.∴.②當b<0時,則點B'在第四象限.同理可得.綜上所述,點B的坐標為或.(3)如圖2,,直線當y=0時,x=3,即C(3,0).∵tan∠BCP=,∴∠BCP=30°,∴PC=2PB.P到直線的距離最小是PB=4,∴PC=1.3-1=-5,P1(-5,0),3+1=2,P(2,0),當m≤-5或m≥2時,PD的距離大于或等于4,點A,B的“確定圓”的面積都不小于9π.點A,B的“確定圓”的面積都不小于9π,m的范圍是m≤-5或m≥2.【點睛】本題考查了一次函數綜合題,解(1)的關鍵是利用勾股定理得出AB的長;解(2)的關鍵是等腰直角三角形的性質得出;解(3)的關鍵是利用30°的直角邊等于斜邊的一半得出PC=2PB.19、(1)作圖見解析;(2)3;(3)【解析】
(1)根據發了3條箴言的人數與所占的百分比列式計算即可求出該班全體團員的總人數為12,再求出發了4條箴言的人數,然后補全統計圖即可;(2)利用該班團員在這一個月內所發箴言的總條數除以總人數即可求得結果;(3)列舉出所有情況,看恰好是一位男同學和一位女同學占總情況的多少即可.【詳解】解:(1)該班團員人數為:3÷25%=12(人),發了4條贈言的人數為:12?2?2?3?1=4(人),將條形統計圖補充完整如下:(2)該班團員所發贈言的平均條數為:(2×1+2×2+3×3+4×4+1×5)÷12=3,故答案為:3;(3)∵發了3條箴言的同學中有兩位男同學,發了4條箴言的同學中有三位女同學,∴發了3條箴言的同學中有一位女同學,發了4條箴言的同學中有一位男同學,方法一:列表得:共有12種結果,且每種結果的可能性相同,所選兩位同學中恰好是一位男同學和一位女同學的情況有7種,所選兩位同學中恰好是一位男同學和一位女同學的概率為:;方法二:畫樹狀圖如下:共有12種結果,且每種結果的可能性相同,所選兩位同學中恰好是一位男同學和一位女同學的情況有7種,所選兩位同學中恰好是一位男同學和一位女同學的概率為:;【點睛】此題考查了樹狀圖法與列表法求概率,以及條形統計圖與扇形統計圖的知識.注意平均條數=總條數÷總人數;如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率.20、(1)購買一個甲種足球需要50元,購買一個乙種籃球需要1元(2)這所學校最多可購買2個乙種足球【解析】
(1)根據題意可以列出相應的分式方程,從而可以求得購買一個甲種足球、一個乙種足球各需多少元;(2)根據題意可以列出相應的不等式,從而可以求得這所學校最多可購買多少個乙種足球.【詳解】(1)設購買一個甲種足球需要x元,則購買一個乙種籃球需要(x+2)元,根據題意得:,解得:x=50,經檢驗,x=50是原方程的解,且符合題意,∴x+2=1.答:購買一個甲種足球需要50元,購買一個乙種籃球需要1元.(2)設可購買m個乙種足球,則購買(50﹣m)個甲種足球,根據題意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:這所學校最多可購買2個乙種足球.【點睛】本題考查分式方程的應用,一元一次不等式的應用,解答此類問題的關鍵是明確題意,列出相應的分式方程和一元一次不等式,注意分式方程要檢驗,問題(2)要與實際相聯系.21、(1)一個水瓶40元,一個水杯是8元;(2)當10<n<25時,選擇乙商場購買更合算.當n>25時,選擇甲商場購買更合算.【解析】
(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意列出方程,求出方程的解即可得到結果;(2)計算出兩商場得費用,比較即可得到結果.【詳解】解:(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場所需費用為(40×5+8n)×80%=160+6.4n乙商場所需費用為5×40+(n﹣5×2)×8=120+8n則∵n>10,且n為整數,∴160+6.4n﹣(120+8n)=40﹣1.6n討論:當10<n<25時,40﹣1.6n>0,160+0.64n>120+8n,∴選擇乙商場購買更合算.當n>25時,40﹣1.6n<0,即160+0.64n<120+8n,∴選擇甲商場購買更合算.【點睛】此題主要考查不等式的應用,解題的關鍵是根據題意找到等量關系與不等關系進行列式求解.22、(1)見解析;(2)tan∠DBC=.【解析】
(1)先利用圓周角定理得到∠ACB=90°,再利用平行線的性質得∠AEO=90°,則根據垂徑定理得到,從而有AD=CD;(2)先在Rt△OAE中利用勾股定理計算出AE,則根據正切的定義得到tan∠DAE的值,然后根據圓周角定理得到∠DAC=∠DBC,從而可確定tan∠DBC的值.【詳解】(1)證明:∵AB為直徑,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE==4,∴tan∠DAE=,∵∠DAC=∠DBC,∴tan∠DBC=.【點睛】垂徑定理及圓周角定理是本題的考點,熟練掌握垂徑定理及圓周角定理是解題的關鍵.23、(1)10%;(1)會
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 牧場奶牛養殖委托管理與品牌推廣合同
- 高端職業技能培訓基地合作辦學合同
- 新能源產業股權代持風險防范與化解協議
- 智能化住宅小區安防監控系統建設與全面維護協議
- 數據安全事件應急響應責任保證合同
- 節慶活動市場代理補充協議
- 智能電網新能源汽車充電站建設與運維服務協議
- 戶外活動專用臨時舞臺租賃與活動效果評估服務協議
- 購買商品混凝土協議書
- 旅行社與景區旅游基礎設施共建合作協議
- 實測實量方案交底
- 銀行客戶經理之情緒管理
- 生產良率系統統計表
- 用TOC理論提高生產制造的競爭力課件
- SketchUp (草圖大師) 基礎培訓PPT課件
- 生命線安裝方案
- 代理機構服務質量考核評價表
- 電廠保安人員管理制度
- 2018年瀘州市生物中考試題含答案
- ge核磁共振機房專用精密空調機技術要求
- 新干縣人民醫院血液透析治療患者告知書
評論
0/150
提交評論