浙江省寧海縣十校聯考2025屆高三數學試題下學期期中考試數學試題_第1頁
浙江省寧海縣十校聯考2025屆高三數學試題下學期期中考試數學試題_第2頁
浙江省寧海縣十校聯考2025屆高三數學試題下學期期中考試數學試題_第3頁
浙江省寧海縣十校聯考2025屆高三數學試題下學期期中考試數學試題_第4頁
浙江省寧海縣十校聯考2025屆高三數學試題下學期期中考試數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省寧海縣十校聯考2025屆高三數學試題下學期期中考試數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設實數x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.42.執行如圖所示的程序框圖,則輸出的結果為()A. B. C. D.3.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.4.已知函數,為圖象的對稱中心,若圖象上相鄰兩個極值點,滿足,則下列區間中存在極值點的是()A. B. C. D.5.直線與拋物線C:交于A,B兩點,直線,且l與C相切,切點為P,記的面積為S,則的最小值為A. B. C. D.6.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.7.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.8.已知集合,,則()A. B. C. D.9.已知復數滿足,則的值為()A. B. C. D.210.已知集合,,則A. B. C. D.11.已知等差數列的前項和為,,,則()A.25 B.32 C.35 D.4012.在平面直角坐標系中,若不等式組所表示的平面區域內存在點,使不等式成立,則實數的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,雙曲線(,)的左頂點為A,右焦點為F,過F作x軸的垂線交雙曲線于點P,Q.若為直角三角形,則該雙曲線的離心率是______.14.記數列的前項和為,已知,且.若,則實數的取值范圍為________.15.如圖是九位評委打出的分數的莖葉統計圖,去掉一個最高分和一個最低分后,所剩數據的平均分為_______.16.若四棱錐的側面內有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.18.(12分)已知矩陣不存在逆矩陣,且非零特低值對應的一個特征向量,求的值.19.(12分)在平面直角坐標系xOy中,曲線的參數方程為(,為參數),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經過極點的圓.已知曲線上的點M對應的參數,射線與曲線交于點.(1)求曲線,的直角坐標方程;(2)若點A,B為曲線上的兩個點且,求的值.20.(12分)已知函數().(1)討論的單調性;(2)若對,恒成立,求的取值范圍.21.(12分)在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若直線與曲線交于、兩點,求的面積.22.(10分)已知數列的前n項和,是等差數列,且.(Ⅰ)求數列的通項公式;(Ⅱ)令.求數列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數,z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.2.D【解析】循環依次為直至結束循環,輸出,選D.點睛:算法與流程圖的考查,側重于對流程圖循環結構的考查.先明晰算法及流程圖的相關概念,包括選擇結構、循環結構、偽代碼,其次要重視循環起點條件、循環次數、循環終止條件,更要通過循環規律,明確流程圖研究的數學問題,是求和還是求項.3.A【解析】

根據指數型函數所過的定點,確定,再根據條件,利用基本不等式求的最小值.【詳解】定點為,,當且僅當時等號成立,即時取得最小值.故選:A【點睛】本題考查指數型函數的性質,以及基本不等式求最值,意在考查轉化與變形,基本計算能力,屬于基礎題型.4.A【解析】

結合已知可知,可求,進而可求,代入,結合,可求,即可判斷.【詳解】圖象上相鄰兩個極值點,滿足,即,,,且,,,,,,當時,為函數的一個極小值點,而.故選:.【點睛】本題主要考查了正弦函數的圖象及性質的簡單應用,解題的關鍵是性質的靈活應用.5.D【解析】

設出坐標,聯立直線方程與拋物線方程,利用弦長公式求得,再由點到直線的距離公式求得到的距離,得到的面積為,作差后利用導數求最值.【詳解】設,,聯立,得則,則由,得設,則,則點到直線的距離從而.令當時,;當時,故,即的最小值為本題正確選項:【點睛】本題考查直線與拋物線位置關系的應用,考查利用導數求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構造函數關系的方式,然后結合導數或者利用函數值域的方法來求解最值.6.C【解析】

先求得的漸近線方程,根據沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎題.7.D【解析】

根據三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學生的運算能力,屬于中檔題.8.D【解析】

先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.9.C【解析】

由復數的除法運算整理已知求得復數z,進而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復數的除法運算與求復數的模,屬于基礎題.10.C【解析】分析:根據集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內容,一般以客觀題形式出現,一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續型”集合則可借助不等式進行運算.11.C【解析】

設出等差數列的首項和公差,即可根據題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數列的通項公式的求法和應用,涉及等差數列的前項和公式的應用,屬于容易題.12.B【解析】

依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區域,要使不等式組所表示的平面區域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.【點睛】本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

根據是等腰直角三角形,且為中點可得,再由雙曲線的性質可得,解出即得.【詳解】由題,設點,由,解得,即線段,為直角三角形,,且,又為雙曲線右焦點,過點,且軸,,可得,,整理得:,即,又,.故答案為:【點睛】本題考查雙曲線的簡單性質,是常考題型.14.【解析】

根據遞推公式,以及之間的關系,即可容易求得,再根據數列的單調性,求得其最大值,則參數的范圍可求.【詳解】當時,,解得.所以.因為,則,兩式相減,可得,即,則.兩式相減,可得.所以數列是首項為3,公差為2的等差數列,所以,則.令,則.當時,,數列單調遞減,而,,,故,即實數的取值范圍為.故答案為:.【點睛】本題考查由遞推公式求數列的通項公式,涉及數列單調性的判斷,屬綜合困難題.15.1【解析】

寫出莖葉圖對應的所有的數,去掉最高分,最低分,再求平均分.【詳解】解:所有的數為:77,78,82,84,84,86,88,93,94,共9個數,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個數,平均分為,故答案為1.【點睛】本題考查莖葉圖及平均數的計算,屬于基礎題.16.【解析】

二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數k,可得,由此可得,則由可求k值.【詳解】解:如圖,設二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結構特征,由四棱錐的側面與底面的夾角求參數值,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2).【解析】

(1)在曲線的參數方程中消去參數,可得出曲線的普通方程,將曲線的極坐標方程變形為,進而可得出曲線的直角坐標方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數方程得,.所以,曲線的普通方程為,將曲線的極坐標方程變形為,所以,曲線的直角坐標方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,,因此,的面積為最大值為.【點睛】本題考查曲線的參數方程、極坐標方程與普通方程之間的相互轉換,同時也考查了直線截圓所形成的三角形面積最值的計算,考查計算能力,屬于中等題.18.【解析】

由不存在逆矩陣,可得,再利用特征多項式求出特征值3,0,,利用矩陣乘法運算即可.【詳解】因為不存在逆矩陣,,所以.矩陣的特征多項式為,令,則或,所以,即,所以,所以【點睛】本題考查矩陣的乘法及特征值、特征向量有關的問題,考查學生的運算能力,是一道容易題.19.(1)..(2)【解析】

(1)先求解a,b,消去參數,即得曲線的直角坐標方程;再求解,利用極坐標和直角坐標的互化公式,即得曲線的直角坐標方程;(2)由于,可設,,代入曲線直角坐標方程,可得的關系,轉化,可得解.【詳解】(1)將及對應的參數,代入得,即,所以曲線的方程為,為參數,所以曲線的直角坐標方程為.設圓的半徑為R,由題意,圓的極坐標方程為(或),將點代入,得,即,所以曲線的極坐標方程為,所以曲線的直角坐標方程為.(2)由于,故可設,代入曲線直角坐標方程,可得,,所以.【點睛】本題考查了極坐標和直角坐標,參數方程和一般方程的互化以及極坐標的幾何意義的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.20.(1)①當時,在上單調遞減,在上單調遞增;②當時,在上單調遞增;(2).【解析】

(1)求出函數的定義域和導函數,,對討論,得導函數的正負,得原函數的單調性;(2)法一:由得,分別運用導函數得出函數(),的單調性,和其函數的最值,可得,可得的范圍;法二:由得,化為令(),研究函數的單調性,可得的取值范圍.【詳解】(1)的定義域為,,①當時,由得,得,在上單調遞減,在上單調遞增;②當時,恒成立,在上單調遞增;(2)法一:由得,令(),則,在上單調遞減,,,即,令,則,在上單調遞增,,在上單調遞減,所以,即,(*)當時,,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調遞減,,,即,當時,由(Ⅰ)知在上單調遞增,恒成立,滿足題意當時,令,則,所以在上單調遞減,又,當時,,,使得,當時,,即,又,,,不滿足題意,綜上所述,的取值范圍是【點睛】本題考查對于含參數的函數的單調性的討論,不等式恒成立時,求解參數的范圍,屬于難度題.21.(1),;(2).【解析】

(1)在直線的參數方程中消去參數可得出直線的普通方程,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論