




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆內蒙古土默特左旗第一中學高三第三次聯考(廣東版)數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,則函數的圖象大致為()A. B.C. D.2.若復數z滿足,則復數z在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要4.橢圓的焦點為,點在橢圓上,若,則的大小為()A. B. C. D.5.的展開式中的項的系數為()A.120 B.80 C.60 D.406.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題7.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立8.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標原點),則雙曲線的離心率為()A. B.3 C. D.9.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③10.若函數()的圖象過點,則()A.函數的值域是 B.點是的一個對稱中心C.函數的最小正周期是 D.直線是的一條對稱軸11.一個算法的程序框圖如圖所示,若該程序輸出的結果是,則判斷框中應填入的條件是()A. B. C. D.12.已知奇函數是上的減函數,若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.4二、填空題:本題共4小題,每小題5分,共20分。13.為了了解一批產品的長度(單位:毫米)情況,現抽取容量為400的樣本進行檢測,如圖是檢測結果的頻率分布直方圖,根據產品標準,單件產品長度在區間的一等品,在區間和的為二等品,其余均為三等品,則樣本中三等品的件數為__________.14.正四棱柱中,,.若是側面內的動點,且,則與平面所成角的正切值的最大值為___________.15.(5分)已知橢圓方程為,過其下焦點作斜率存在的直線與橢圓交于兩點,為坐標原點,則面積的取值范圍是____________.16.已知,則_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.18.(12分)在中,角,,所對的邊分別為,,,且.求的值;設的平分線與邊交于點,已知,,求的值.19.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點,以為折痕將折起,使點到達點位置(平面).(1)若為直線上任意一點,證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.20.(12分)如圖,在四棱錐中,底面,底面是直角梯形,為側棱上一點,已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.21.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:22.(10分)已知,,分別為內角,,的對邊,且.(1)證明:;(2)若的面積,,求角.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
用排除法,通過函數圖像的性質逐個選項進行判斷,找出不符合函數解析式的圖像,最后剩下即為此函數的圖像.【詳解】設,由于,排除B選項;由于,所以,排除C選項;由于當時,,排除D選項.故A選項正確.故選:A【點睛】本題考查了函數圖像的性質,屬于中檔題.2、A【解析】
化簡復數,求得,得到復數在復平面對應點的坐標,即可求解.【詳解】由題意,復數z滿足,可得,所以復數在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數的運算,以及復數的幾何表示方法,其中解答中熟記復數的運算法則,結合復數的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.3、B【解析】
根據充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關鍵是要弄清楚誰是條件,誰是結論.4、C【解析】
根據橢圓的定義可得,,再利用余弦定理即可得到結論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點睛】本題考查橢圓的定義,考查余弦定理,考查運算能力,屬于基礎題.5、A【解析】
化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學生的計算能力.6、B【解析】
由的單調性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數是R上的增函數,知命題p是真命題.對于命題q,當,即時,;當,即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學生邏輯推理,分類討論,數學運算的能力,屬于中檔題.7、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.8、B【解析】
設,代入雙曲線方程相減可得到直線的斜率與中點坐標之間的關系,從而得到的等式,求出離心率.【詳解】,設,則,兩式相減得,∴,.故選:B.【點睛】本題考查求雙曲線的離心率,解題方法是點差法,即出現雙曲線的弦中點坐標時,可設弦兩端點坐標代入雙曲線方程相減后得出弦所在直線斜率與中點坐標之間的關系.9、C【解析】
根據直線與平面,平面與平面的位置關系進行判斷即可.【詳解】根據面面平行的性質以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關系,屬于中檔題.10、A【解析】
根據函數的圖像過點,求出,可得,再利用余弦函數的圖像與性質,得出結論.【詳解】由函數()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數的圖像與性質,需熟記性質與公式,屬于基礎題.11、D【解析】
首先判斷循環結構類型,得到判斷框內的語句性質,然后對循環體進行分析,找出循環規律,判斷輸出結果與循環次數以及的關系,最終得出選項.【詳解】經判斷此循環為“直到型”結構,判斷框為跳出循環的語句,第一次循環:;第二次循環:;第三次循環:,此時退出循環,根據判斷框內為跳出循環的語句,,故選D.【點睛】題主要考查程序框圖的循環結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區分程序框圖是條件分支結構還是循環結構;(3)注意區分當型循環結構和直到型循環結構;(4)處理循環結構的問題時一定要正確控制循環次數;(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規定的運算方法逐次計算,直到達到輸出條件即可.12、B【解析】
根據函數的奇偶性和單調性得到可行域,畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】奇函數是上的減函數,則,且,畫出可行域和目標函數,,即,表示直線與軸截距的相反數,根據平移得到:當直線過點,即時,有最小值為.故選:.【點睛】本題考查了函數的單調性和奇偶性,線性規劃問題,意在考查學生的綜合應用能力,畫出圖像是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、100.【解析】分析:根據頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數.詳解:由題意得,三等品的長度在區間,和內,根據頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數為.點睛:頻率分布直方圖的縱坐標為,因此每一個小矩形的面積表示樣本個體落在該區間內的頻率,把小矩形的高視為頻率時常犯的錯誤.14、2.【解析】
如圖,以為原點建立空間直角坐標系,設點,由得,證明為與平面所成角,令,用三角函數表示出,求解三角函數的最大值得到結果.【詳解】如圖,以為原點建立空間直角坐標系,設點,則,,又,得即;又平面,為與平面所成角,令,當時,最大,即與平面所成角的正切值的最大值為2.故答案為:2【點睛】本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標,在動點坐標內引入參數,將最值問題轉化為函數的最值問題求解,考查了學生的運算求解能力和直觀想象能力.15、【解析】
由題意,,則,得.由題意可設的方程為,,聯立方程組,消去得,恒成立,,,則,點到直線的距離為,則,又,則,當且僅當即時取等號.故面積的取值范圍是.16、【解析】
化簡得,利用周期即可求出答案.【詳解】解:,∴函數的最小正周期為6,∴,,故答案為:.【點睛】本題主要考查三角函數的性質的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析.(2)【解析】
(1)通過證明平面,證得,證得,由此證得平面,進而證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】(1)因為,所以平面,因為平面,所以.因為,點為中點,所以.因為,所以平面.因為平面,所以平面平面.(2)以點為坐標原點,直線分別為軸,軸,過點與平面垂直的直線為軸,建立空間直角坐標系,則,,,,,,,,,,設平面的一個法向量,則即取,則,,所以,設平面的一個法向量,則即取,則,,所以,設平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、;.【解析】
利用正弦定理化簡求值即可;利用兩角和差的正弦函數的化簡公式,結合正弦定理求出的值.【詳解】解:,由正弦定理得:,,,,,又,為三角形內角,故,,則,故,;(2)平分,設,則,,,,則,,又,則在中,由正弦定理:,.【點睛】本題考查正弦定理和兩角和差的正弦函數的化簡公式,二倍角公式,考查運算能力,屬于基礎題.19、(1)見解析(2)【解析】
(1)根據中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標系,找到點的坐標代入公式即可計算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點,∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補,,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點,,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標系,則,,,,.設平面的法向量為,∴,即.令,則,,可得平面的一個法向量為.又平面的一個法向量為,∴,∴二面角的余弦值為.【點睛】此題考查線面平行,建系通過坐標求二面角等知識點,屬于一般性題目.20、(Ⅰ)證明見解析;(Ⅱ).【解析】
(Ⅰ)先證明
,再證明平面,利用面面垂直的判定定理,即可求證所求證;(Ⅱ)根據題意以為軸、軸、軸建立空間直角坐標系,求出平面和平面的向量,利用公式即可求解.【詳解】(Ⅰ)證:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以為軸、軸、軸建立如圖所示的空間直角坐標系,則,,,設平面的法向量為,則令,則,是平面的一個法向量設平面的一個法向量為令,則是平面的一個法向量=又二面角為鈍二面角,其余弦值為.【點睛】本題考查線面、面面垂直的判定定理與性質定理,考查向量法求二面角的余弦值,考查直觀想象能力與運算求解能力,屬于中檔題.21、(Ⅰ)最小值為;(Ⅱ)見解析【解析】
(1)根據題意構造平均值不等式,結合均值不等式可得結果;(2)利用分析法證明,結合常用不等式和均值不等式即可證明.【詳解】(Ⅰ)則當且僅當,即,時,所以的最小值為.(Ⅱ)要證明:,只需
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 休閑食品健康化轉型與市場拓展的健康食品市場拓展的健康食品品牌競爭策略報告
- 西方各國如何利用文化軟實力維護國家形象試題及答案
- 現代政治學的基本概念試題及答案
- 西方聯邦制與單一制試題及答案
- 公共政策與科技倫理的協調試題及答案
- 網絡工程師考試信息技術發展趨勢試題及答案
- 市場需求與機電工程試題及答案
- 深入分析網絡架構設計的原則與試題及答案
- 西方社會貧富差距與政治權力的關系研究試題及答案
- 探討機電工程的技術更新與試題及答案
- 風洞試驗與強度驗證
- 3人股份協議書模板
- GB 20182-2024商用車駕駛室外部凸出物
- GB/T 24067-2024溫室氣體產品碳足跡量化要求和指南
- 陜2023TJ077 住宅廚房、衛生間裝配式L型構件排氣道系統圖集
- 紅色教育項目財務分析(3篇模板)
- 二手房買賣合同范本下載可打印
- 山東省煙臺市萊州市2023-2024學年八年級下學期期中數學試題
- 中國加速康復外科臨床實踐指南(2021)解讀
- 叮咚智能鎖說明書
- DB32T 4719-2024酒店服務與廚師職業技能等級認定工作規范
評論
0/150
提交評論