2025屆貴州省銅仁市碧江區銅仁一中高三教學情況調研(一)數學試題_第1頁
2025屆貴州省銅仁市碧江區銅仁一中高三教學情況調研(一)數學試題_第2頁
2025屆貴州省銅仁市碧江區銅仁一中高三教學情況調研(一)數學試題_第3頁
2025屆貴州省銅仁市碧江區銅仁一中高三教學情況調研(一)數學試題_第4頁
2025屆貴州省銅仁市碧江區銅仁一中高三教學情況調研(一)數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆貴州省銅仁市碧江區銅仁一中高三教學情況調研(一)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立2.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.53.已知復數z1=3+4i,z2=a+i,且z1是實數,則實數a等于()A. B. C.- D.-4.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.5.已知函數,則下列結論錯誤的是()A.函數的最小正周期為πB.函數的圖象關于點對稱C.函數在上單調遞增D.函數的圖象可由的圖象向左平移個單位長度得到6.已知實數x,y滿足約束條件,若的最大值為2,則實數k的值為()A.1 B. C.2 D.7.已知函數,則不等式的解集為()A. B. C. D.8.函數與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.109.設是兩條不同的直線,是兩個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則10.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=011.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形12.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.等邊的邊長為2,則在方向上的投影為________.14.函數在處的切線方程是____________.15.設點P在函數的圖象上,點Q在函數的圖象上,則線段PQ長度的最小值為_________16.已知數列的前項和為且滿足,則數列的通項_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若曲線在處的切線為,試求實數,的值;(2)當時,若有兩個極值點,,且,,若不等式恒成立,試求實數m的取值范圍.18.(12分)設等差數列的首項為0,公差為a,;等差數列的首項為0,公差為b,.由數列和構造數表M,與數表;記數表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數表中位于第i行第j列的元素為,其中(,,).如:,.(1)設,,請計算,,;(2)設,,試求,的表達式(用i,j表示),并證明:對于整數t,若t不屬于數表M,則t屬于數表;(3)設,,對于整數t,t不屬于數表M,求t的最大值.19.(12分)小麗在同一城市開的2家店鋪各有2名員工.節假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調劑1人到該店維持營業,否則該店就停業.(1)求發生調劑現象的概率;(2)設營業店鋪數為X,求X的分布列和數學期望.20.(12分)在數列中,,(1)求數列的通項公式;(2)若存在,使得成立,求實數的最小值21.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.22.(10分)已知數列是各項均為正數的等比數列,,且,,成等差數列.(Ⅰ)求數列的通項公式;(Ⅱ)設,為數列的前項和,記,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.2.B【解析】

還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.3.A【解析】分析:計算,由z1,是實數得,從而得解.詳解:復數z1=3+4i,z2=a+i,.所以z1,是實數,所以,即.故選A.點睛:本題主要考查了復數共軛的概念,屬于基礎題.4.D【解析】

根據題意畫出幾何關系,由四邊形的內切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據題意,畫出幾何關系如下圖所示:設四邊形的內切圓半徑為,雙曲線半焦距為,則所以,四邊形的內切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.5.D【解析】

由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.6.B【解析】

畫出約束條件的可行域,利用目標函數的幾何意義,求出最優解,轉化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數最值求解參數值,數形結合思想,分類討論是解題的關鍵,屬于中檔題.7.D【解析】

先判斷函數的奇偶性和單調性,得到,且,解不等式得解.【詳解】由題得函數的定義域為.因為,所以為上的偶函數,因為函數都是在上單調遞減.所以函數在上單調遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數的奇偶性和單調性的判斷,考查函數的奇偶性和單調性的應用,意在考查學生對這些知識的理解掌握水平.8.C【解析】

根據直線過定點,采用數形結合,可得最多交點個數,然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數對稱性的應用,數形結合,難點在于正確畫出圖像,同時掌握基礎函數的性質,屬難題.9.C【解析】

根據空間中直線與平面、平面與平面位置關系相關定理依次判斷各個選項可得結果.【詳解】對于,當為內與垂直的直線時,不滿足,錯誤;對于,設,則當為內與平行的直線時,,但,錯誤;對于,由,知:,又,,正確;對于,設,則當為內與平行的直線時,,錯誤.故選:.【點睛】本題考查立體幾何中線面關系、面面關系有關命題的辨析,考查學生對于平行與垂直相關定理的掌握情況,屬于基礎題.10.A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.11.C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質及推論.12.B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

建立直角坐標系,結合向量的坐標運算求解在方向上的投影即可.【詳解】建立如圖所示的平面直角坐標系,由題意可知:,,,則:,,且,,據此可知在方向上的投影為.【點睛】本題主要考查平面向量數量積的坐標運算,向量投影的定義與計算等知識,意在考查學生的轉化能力和計算求解能力.14.【解析】

求出和的值,利用點斜式可得出所求切線的方程.【詳解】,則,,.因此,函數在處的切線方程是,即.故答案為:.【點睛】本題考查利用導數求函數的切線方程,考查計算能力,屬于基礎題.15.【解析】

由解析式可分析兩函數互為反函數,則圖象關于對稱,則點到的距離的最小值的二倍即為所求,利用導函數即可求得最值.【詳解】由題,因為與互為反函數,則圖象關于對稱,設點為,則到直線的距離為,設,則,令,即,所以當時,,即單調遞減;當時,,即單調遞增,所以,則,所以的最小值為,故答案為:【點睛】本題考查反函數的性質的應用,考查利用導函數研究函數的最值問題.16.【解析】

先求得時;再由可得時,兩式作差可得,進而求解.【詳解】當時,,解得;由,可知當時,,兩式相減,得,即,所以數列是首項為,公比為的等比數列,所以,故答案為:【點睛】本題考查由與的關系求通項公式,考查等比數列的通項公式的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)根據題意,求得的值,根據切點在切線上以及斜率等于,構造方程組求得的值;(2)函數有兩個極值點,等價于方程的兩個正根,,不等式恒成立,等價于恒成立,,令,求出導數,判斷單調性,即可得到的范圍,即的范圍.【詳解】(1)由題可知,,,聯立可得.(2)當時,,,有兩個極值點,,且,,是方程的兩個正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是減函數,,故.【點睛】該題考查的是有關導數的問題,涉及到的知識點有導數的幾何意義,函數的極值點的個數,構造新函數,應用導數研究函數的值域得到參數的取值范圍,屬于較難題目.18.(1)(2)詳見解析(3)29【解析】

(1)將,代入,可求出,,可代入求,,可求結果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數列的通項公式為:;等差數列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數列的通項公式為:;等差數列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數,考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數.反證法:假設集合中任何一個元素,都不是7的倍數,則集合中每一元素關于7的余數可以為1,2,3,4,5,6,又因為集合中共有7個元素,所以集合中至少存在兩個元素關于7的余數相同,不妨設為,,其中,,.則這兩個元素的差為7的倍數,即,所以,與矛盾,所以假設不成立,即原命題成立.即集合中至少有一元素是7的倍數,不妨設該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負整數,設,則,且,,,,所以,當,時,對于整數,若,則成立.(3)下面用反證法證明:若對于整數,,則,假設命題不成立,即,且.則對于整數,存在,,,,,使成立,整理,得,又因為,,所以且是7的倍數,因為,,所以,所以矛盾,即假設不成立.所以對于整數,若,則,又由第二問,對于整數,則,所以的最大值,就是集合中元素的最大值,又因為,,,,所以.【點睛】本題考查數列的綜合應用,以及反證法,求最值,屬于難題.19.(1)(2)見解析,【解析】

(1)根據題意設出事件,列出概率,運用公式求解;(2)由題得,X的所有可能取值為,根據(1)和變量對應的事件,可得變量對應的概率,即可得分布列和期望值.【詳解】(1)記2家小店分別為A,B,A店有i人休假記為事件(,1,2),B店有i人,休假記為事件(,1,2),發生調劑現象的概率為P.則,,.所以.答:發生調劑現象的概率為.(2)依題意,X的所有可能取值為0,1,2.則,,.所以X的分布表為:X012P所以.【點睛】本題是一道考查概率和期望的常考題型.20.(1);(2)【解析】

(1)由得,兩式相減可得是從第二項開始的等比數列,由此即可求出答案;(2),分類討論,當時,,作商法可得數列為遞增數列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數的最小值.【點睛】本題主要考查地推數列的應用,屬于中檔題.21.(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結合絕對值不等式的性質即可證得題中的結論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論