




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖南省張家界市慈利縣高三下學期開學考試數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,且,則()A. B. C.1 D.22.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.3.若復數()在復平面內的對應點在直線上,則等于()A. B. C. D.4.數列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.45.設集合,集合,則=()A. B. C. D.R6.設集合則()A. B. C. D.7.已知向量,夾角為,,,則()A.2 B.4 C. D.8.設復數滿足為虛數單位),則()A. B. C. D.9.已知數列中,,(),則等于()A. B. C. D.210.函數,,的部分圖象如圖所示,則函數表達式為()A. B.C. D.11.函數的部分圖象大致為()A. B.C. D.12.下列函數中,值域為的偶函數是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的常數項為__________.14.已知過點的直線與函數的圖象交于、兩點,點在線段上,過作軸的平行線交函數的圖象于點,當∥軸,點的橫坐標是15.已知一個圓錐的底面積和側面積分別為和,則該圓錐的體積為________16.已知向量,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列中,,前項和為,若對任意的,均有(是常數,且)成立,則稱數列為“數列”.(1)若數列為“數列”,求數列的前項和;(2)若數列為“數列”,且為整數,試問:是否存在數列,使得對任意,成立?如果存在,求出這樣數列的的所有可能值,如果不存在,請說明理由.18.(12分)已知.(1)若是上的增函數,求的取值范圍;(2)若函數有兩個極值點,判斷函數零點的個數.19.(12分)在直角坐標系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.(1)求曲線的方程;(2)若點為曲線上的兩個動點,記,判斷是否存在常數使得點到直線的距離為定值?若存在,求出常數的值和這個定值;若不存在,請說明理由.20.(12分)試求曲線y=sinx在矩陣MN變換下的函數解析式,其中M,N.21.(12分)《山東省高考改革試點方案》規定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數外3門統考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個等級.參照正態分布原則,確定各等級人數所占比例分別為、、、、、、、.選考科目成績計入考生總成績時,將至等級內的考生原始成績,依照等比例轉換法則,分別轉換到、、、、、、、八個分數區間,得到考生的等級成績.某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布.(1)求物理原始成績在區間的人數;(2)按高考改革方案,若從全省考生中隨機抽取3人,記表示這3人中等級成績在區間的人數,求的分布列和數學期望.(附:若隨機變量,則,,)22.(10分)等差數列的公差為2,分別等于等比數列的第2項,第3項,第4項.(1)求數列和的通項公式;(2)若數列滿足,求數列的前2020項的和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標表示,屬于基礎題.2.C【解析】
設,根據導數的幾何意義,求出切線斜率,進而得到切線方程,將點坐標代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【詳解】圓可化為.設,則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【點睛】本題考查直線與圓位置關系、直線與拋物線位置關系,拋物線兩切點所在直線求解是解題的關鍵,屬于中檔題.3.C【解析】
由題意得,可求得,再根據共軛復數的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.【點睛】本題考查復數的幾何表示和共軛復數的定義,屬于基礎題.4.D【解析】
用去換中的n,得,相加即可找到數列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數列是以6為周期的周期數列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.5.D【解析】試題分析:由題,,,選D考點:集合的運算6.C【解析】
直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.7.A【解析】
根據模長計算公式和數量積運算,即可容易求得結果.【詳解】由于,故選:A.【點睛】本題考查向量的數量積運算,模長的求解,屬綜合基礎題.8.B【解析】
易得,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數的乘法、除法運算,考查學生的基本計算能力,是一道容易題.9.A【解析】
分別代值計算可得,觀察可得數列是以3為周期的周期數列,問題得以解決.【詳解】解:∵,(),
,
,
,
,
…,
∴數列是以3為周期的周期數列,
,
,
故選:A.【點睛】本題考查數列的周期性和運用:求數列中的項,考查運算能力,屬于基礎題.10.A【解析】
根據圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據圖像求正弦型函數的解析式,三角函數誘導公式,屬于基礎題.11.B【解析】
圖像分析采用排除法,利用奇偶性判斷函數為奇函數,再利用特值確定函數的正負情況?!驹斀狻浚势婧瘮?,四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。12.C【解析】試題分析:A中,函數為偶函數,但,不滿足條件;B中,函數為奇函數,不滿足條件;C中,函數為偶函數且,滿足條件;D中,函數為偶函數,但,不滿足條件,故選C.考點:1、函數的奇偶性;2、函數的值域.二、填空題:本題共4小題,每小題5分,共20分。13.31【解析】
由二項式定理及其展開式得通項公式得:因為的展開式得通項為,則的展開式中的常數項為:,得解.【詳解】解:,則的展開式中的常數項為:.故答案為:31.【點睛】本題考查二項式定理及其展開式的通項公式,求某項的導數,考查計算能力.14.【解析】
通過設出A點坐標,可得C點坐標,通過∥軸,可得B點坐標,于是再利用可得答案.【詳解】根據題意,可設點,則,由于∥軸,故,代入,可得,即,由于在線段上,故,即,解得.15.【解析】
依據圓錐的底面積和側面積公式,求出底面半徑和母線長,再根據勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積。【詳解】設圓錐的底面半徑為,母線長為,高為,所以有解得,故該圓錐的體積為?!军c睛】本題主要考查圓錐的底面積、側面積和體積公式的應用。16.【解析】
求出,然后由模的平方轉化為向量的平方,利用數量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數量積的定義與運算律是解題基礎.本題關鍵是用數量積的定義把模的運算轉化為數量積的運算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)存在,【解析】
由數列為“數列”可得,,,兩式相減得,又,利用等比數列通項公式即可求出,進而求出;由題意得,,,兩式相減得,,據此可得,當時,,進而可得,即數列為常數列,進而可得,結合,得到關于的不等式,再由時,且為整數即可求出符合題意的的所有值.【詳解】因為數列為“數列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數列是以為首項,以為公比的等比數列,所以,因為,所以.(2)由題意得,故,兩式相減得所以,當時,又因為所以當時,所以成立,所以當時,數列是常數列,所以因為當時,成立,所以,所以在中令,因為,所以可得,所以,由時,且為整數,可得,把分別代入不等式可得,,所以存在數列符合題意,的所有值為.【點睛】本題考查數列的新定義、等比數列的通項公式和數列遞推公式的運用;考查運算求解能力、邏輯推理能力和對新定義的理解能力;通過反復利用遞推公式,得到數列為常數列是求解本題的關鍵;屬于綜合型強、難度大型試題.18.(1)(2)三個零點【解析】
(1)由題意知恒成立,構造函數,對函數求導,求得函數最值,進而得到結果;(2)當時先對函數求導研究函數的單調性可得到函數有兩個極值點,再證,.【詳解】(1)由得,由題意知恒成立,即,設,,時,遞減,時,,遞增;故,即,故的取值范圍是.(2)當時,單調,無極值;當時,,一方面,,且在遞減,所以在區間有一個零點.另一方面,,設,則,從而在遞增,則,即,又在遞增,所以在區間有一個零點.因此,當時在和各有一個零點,將這兩個零點記為,,當時,即;當時,即;當時,即:從而在遞增,在遞減,在遞增;于是是函數的極大值點,是函數的極小值點.下面證明:,由得,即,由得,令,則,①當時,遞減,則,而,故;②當時,遞減,則,而,故;一方面,因為,又,且在遞增,所以在上有一個零點,即在上有一個零點.另一方面,根據得,則有:,又,且在遞增,故在上有一個零點,故在上有一個零點.又,故有三個零點.【點睛】本題考查函數的零點,導數的綜合應用.在研究函數零點時,有一種方法是把函數的零點轉化為方程的解,再把方程的解轉化為函數圖象的交點,特別是利用分離參數法轉化為動直線與函數圖象交點問題,這樣就可利用導數研究新函數的單調性與極值,從而得出函數的變化趨勢,得出結論.19.(1)(2)存在;常數,定值【解析】
(1)設出的坐標,利用以及,求得曲線的方程.(2)當直線的斜率存在時,設出直線的方程,求得到直線的距離.聯立直線的方程和曲線的方程,寫出根與系數關系,結合以及為定值,求得的值.當直線的斜率不存在時,驗證.由此得到存在常數,且定值.【詳解】(1)解析:(1)設,,由題可得,解得又,即,消去得:(2)當直線的斜率存在時,設直線的方程為設,由可得:由點到的距離為定值可得(為常數)即得:即,又為定值時,,此時,且符合當直線的斜率不存在時,設直線方程為由題可得,時,,經檢驗,符合條件綜上可知,存在常數,且定值【點睛】本小題主要考查軌跡方程的求法,考查直線和橢圓的位置關系,考查運算求解能力,考查橢圓中的定值問題,屬于難題.20.y=2sin2x.【解析】
計算MN,計算得到函數表達式.【詳解】∵M,N,∴MN,∴在矩陣MN變換下,→∴曲線y=sinx在矩陣MN變換下的函數解析式為y=2sin2x.【點睛】本題考查了矩陣變換,意在考查學生的計算能力.21.(Ⅰ)1636人;(Ⅱ)見解析.【解析】
(Ⅰ)根據正態曲線的對稱性,可將區間分為和兩種情況,然后根據特殊區間上的概率求出成績在區間內的概率,進而可求出相應的人數;(Ⅱ)由題意得成績在區間[61,80]的概率為,且,由此可得的分布列和數學期望.【詳解】(Ⅰ)因為物理原始成績,所以.所以物理原始成績在(47,86)的人數為(人).(Ⅱ)由題意得,隨機抽取1人,其成績在區間[61,80]內的概率為.所以隨機抽取三人,則的所有可能取值為0,1,2,3,且,所以,,,.所以的分布列為0123所以數學期望.【點睛】(1)解答第一問的關鍵是利用正態分布的三個特殊區間表示所求概率的區間,再根據特殊區間上的概率求解,解題時注意結合正態曲線的對稱性.(2)解答第二問的關鍵是判斷出隨機變量服從二項分布,然后可得分布列及其數學期望.當被抽取的總體的容量較大時,抽樣可認為是等可能的,進而可得隨機變量服從二項分布.22.(1),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/GXAS 830-2024經橈動脈穿刺介入診療患者術肢管理規范
- T/CI 500-2024角膜塑形鏡驗配規程
- T/CATCM 031-2024柔毛淫羊藿種苗分級標準
- 瓷磚銷售合同簡單5篇
- T/CECS 10381-2024濾池用不銹鋼濾板及配套組件
- 上海安全生產知識c試題及答案
- 正規居間合同6篇
- 版民間個人借款合同4篇
- 業務員付加工染費的合同8篇
- 2025合同范本對外承包項目借款合同2篇
- 統編版(2024)七年級下冊《道德與法治》課本“活動課”參考答案
- 2025年呼吸內鏡考試試題及答案
- 林海雪原考試題和答案
- T-ZSA 232-2024 特種巡邏機器人通.用技術要求
- 工貿企業安全生產臺賬資料
- 2025年浙江名校協作體高三語文2月聯考作文題目解析及范文:“向往”的“苦處”與“樂處”
- epc亮化合同范本
- 《ESD基礎知識培訓》課件
- 1《學會尊重》(說課稿)統編版道德與法治四年級下冊
- 英語青藍工程徒弟心得體會
- 數據資產入表的探討與思考
評論
0/150
提交評論