




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市上外附中2025屆高三下學(xué)期第一次月考數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.2.已知雙曲線(,)的左、右焦點分別為,以(為坐標(biāo)原點)為直徑的圓交雙曲線于兩點,若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.3.已知向量與的夾角為,,,則()A. B.0 C.0或 D.4.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.5.下圖為一個正四面體的側(cè)面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.6.已知平面向量,滿足,,且,則()A.3 B. C. D.57.已知三棱錐中,為的中點,平面,,,則有下列四個結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時,與平面所成的角的范圍為;④當(dāng)時,為平面內(nèi)一動點,若OM∥平面,則在內(nèi)軌跡的長度為1.其中正確的個數(shù)是().A.1 B.1 C.3 D.48.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個數(shù)為()A.4 B.3 C.2 D.19.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.10.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.11.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.12.的展開式中有理項有()A.項 B.項 C.項 D.項二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則____________.14.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.15.已知為拋物線:的焦點,過作兩條互相垂直的直線,,直線與交于、兩點,直線與交于、兩點,則的最小值為__________.16.如圖,養(yǎng)殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個三角形養(yǎng)殖區(qū).為了便于管理,在線段之間有一觀察站點,到直線,的距離分別為8百米、1百米,則觀察點到點、距離之和的最小值為______________百米.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.18.(12分)交通部門調(diào)查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關(guān);平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員女性駕駛員合計(2)根據(jù)這些樣本數(shù)據(jù)來估計總體,隨機調(diào)查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結(jié)果相互獨立,求的分布列和數(shù)學(xué)期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82819.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.20.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.21.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.22.(10分)已知函數(shù).(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計算能力,屬于基礎(chǔ)題.2.D【解析】
連接,可得,在中,由余弦定理得,結(jié)合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D【點睛】本題考查了雙曲線的性質(zhì)及雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.3.B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學(xué)生的計算能力,屬于基礎(chǔ)題.4.D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.5.C【解析】
將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設(shè)正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應(yīng)用,屬于中檔題.6.B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點睛】考查向量的數(shù)量積及向量模的運算,是基礎(chǔ)題.7.C【解析】
由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點睛】此題考查立體幾何中與點、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問題,可以用已知的定理或性質(zhì)來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.8.A【解析】
由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項.【點睛】考查集合并集運算,屬于簡單題.9.B【解析】
列出循環(huán)的每一步,進而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時:,,所以:不成立.繼續(xù)進行循環(huán),…,當(dāng),時,成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【點睛】本題考查的知識要點:程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.10.B【解析】
根據(jù)組合知識,計算出選出的人分成兩隊混合雙打的總數(shù)為,然后計算和分在一組的數(shù)目為,最后簡單計算,可得結(jié)果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應(yīng)用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.11.B【解析】
由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎(chǔ)題.12.B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當(dāng),,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由于,,則.14.【解析】
求的最小值可以轉(zhuǎn)化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設(shè),由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設(shè)以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應(yīng)用問題,涉及到圓的相關(guān)知識與余弦定理,考查學(xué)生的分析問題和解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.15.16.【解析】由題意可知拋物線的焦點,準(zhǔn)線為設(shè)直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設(shè)點由跟與系數(shù)的關(guān)系得,同理∵根據(jù)拋物線的性質(zhì),拋物線上的點到焦點的距離等于到準(zhǔn)線的距離∴,同理∴,當(dāng)且僅當(dāng)時取等號.故答案為16點睛:(1)與拋物線有關(guān)的最值問題,一般情況下都與拋物線的定義有關(guān).利用定義可將拋物線上的點到焦點的距離轉(zhuǎn)化為到準(zhǔn)線的距離,可以使運算化繁為簡.“看到準(zhǔn)線想焦點,看到焦點想準(zhǔn)線”,這是解決拋物線焦點弦有關(guān)問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.16.【解析】
建系,將直線用方程表示出來,再用參數(shù)表示出線段的長度,最后利用導(dǎo)數(shù)來求函數(shù)最小值.【詳解】以為原點,所在直線分別作為軸,建立平面直角坐標(biāo)系,則.設(shè)直線,即,則,所以,所以,,則,則,當(dāng)時,,則單調(diào)遞減,當(dāng)時,,則單調(diào)遞增,所以當(dāng)時,最短,此時.故答案為:【點睛】本題考查導(dǎo)數(shù)的實際應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)(i)(ii)證明見解析【解析】
(1)求出導(dǎo)函數(shù),分類討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個零點求解參數(shù)取值范圍;(ii)設(shè),通過轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳解】(1)因為,所以當(dāng)時,在上恒成立,所以在上單調(diào)遞增,當(dāng)時,的解集為,的解集為,所以的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為;(2)(i)由(1)可知,當(dāng)時,在上單調(diào)遞增,至多一個零點,不符題意,當(dāng)時,因為有兩個零點,所以,解得,因為,且,所以存在,使得,又因為,設(shè),則,所以單調(diào)遞增,所以,即,因為,所以存在,使得,綜上,;(ii)因為,所以,因為,所以,設(shè),則,所以,解得,所以,所以,設(shè),則,設(shè),則,所以單調(diào)遞增,所以,所以,即,所以單調(diào)遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.【點睛】此題考查利用導(dǎo)函數(shù)處理函數(shù)的單調(diào)性,根據(jù)函數(shù)的零點個數(shù)求參數(shù)的取值范圍,通過等價轉(zhuǎn)化證明與零點相關(guān)的命題.18.(1)填表見解析;有的把握認為,平均車速超過與性別有關(guān)(2)詳見解析【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷出有的把握認為,平均車速超過與性別有關(guān).(2)利用二項分布的知識計算出分布列和數(shù)學(xué)期望.【詳解】(1)平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員301040女性駕駛員51520合計352560因為,,所以有的把握認為,平均車速超過與性別有關(guān).(2)服從,即,.所以的分布列如下0123的期望【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查二項分布分布列和數(shù)學(xué)期望,屬于中檔題.19.(1)(2)不存在;詳見解析【解析】
(1)設(shè),,,通過,即為的中點,轉(zhuǎn)化求解,點的軌跡的方程.(2)設(shè)直線的方程為,先根據(jù),可得,①,再根據(jù)韋達定理,點在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設(shè),,則,,由題意知,所以為中點,由中點坐標(biāo)公式得,即,又點在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設(shè)直線的方程為,因為,故,即①,聯(lián)立,消去得:,設(shè),,,,,因為四邊形為平行四邊形,故,點在橢圓上,故,整理得②,將①代入②,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GA 2190-2024警用服飾移民管理警察絲織胸徽
- 2025年藝術(shù)與文化管理專業(yè)考試題及答案
- 2025年通信產(chǎn)品開發(fā)工程師考試試題及答案
- 會計學(xué)第一章試題及答案
- 民法總論考試題庫及答案
- 北京南天java面試題及答案
- 2025年市場調(diào)查與分析能力測試題及答案
- 2025年空間設(shè)計與規(guī)劃專業(yè)考試試題及答案
- 市場營銷策略在互聯(lián)網(wǎng)行業(yè)的應(yīng)用與實踐試題集
- 網(wǎng)絡(luò)工程基礎(chǔ)知識強項試題及答案
- 互聯(lián)網(wǎng)與營銷創(chuàng)新智慧樹知到期末考試答案章節(jié)答案2024年華東師范大學(xué)
- 以塞罕壩精神建設(shè)美麗中國大力弘揚塞罕壩精神課件
- 醫(yī)療銷售經(jīng)驗技巧分享
- 2024年中國廣電山東網(wǎng)絡(luò)有限公司招聘筆試參考題庫附帶答案詳解
- 塔吊的安拆培訓(xùn)課件
- XBT 240-2023 氟化鉺 (正式版)
- YY 9706.230-2023 正式版 醫(yī)用電氣設(shè)備 第2-30部分:自動無創(chuàng)血壓計的基本安全和基本性能專用要求
- 醫(yī)院檢驗科實驗室生物安全管理手冊
- 第十三章被子植物2
- 4馬克思主義宗教觀
- 中廣核研究院熱室設(shè)施建設(shè)項目 環(huán)境影響報告書(建造階段)
評論
0/150
提交評論