




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
Complimentsof
Accelerating
AIwith
SyntheticData
GeneratingDataforAIProjects
KhaledElEmam
THELEADERINAICOMPUTING.
Signuptogetthe
latestAInewsstraight
toyourinbox.
SUBSCRIBE
AcceleratingAIwith SyntheticDataGeneratingDataforAIProjects
KhaledElEmam
Beijing·Boston·Farnham·Sebastopol·Tokyo
AcceleratingAIwithSyntheticData
byKhaledElEmam
Copyright?2020O’ReillyMedia,Inc.Allrightsreserved.
PrintedintheUnitedStatesofAmerica.
PublishedbyO’ReillyMedia,Inc.,1005GravensteinHighwayNorth,Sebastopol,CA95472.
O’Reillybooksmaybepurchasedforeducational,business,orsalespromotionaluse.Onlineeditionsarealsoavailableformosttitles
(
).Formoreinfor‐mation,contactourcorporate/institutionalsalesdepartment:800-998-9938or
corporate@
.
AcquisitionsEditor:JonathanHassell
DevelopmentEditor:MelissaPotter
ProductionEditor:DanielElfanbaum
Copyeditor:SharonWilkey
Proofreader:ShannonTurlington
InteriorDesigner:DavidFutato
CoverDesigner:KarenMontgomery
Illustrator:RebeccaDemarest
June2020:FirstEdition
RevisionHistoryfortheFirstEdition
2020-06-03:FirstRelease
TheO’ReillylogoisaregisteredtrademarkofO’ReillyMedia,Inc.AcceleratingAIwithSyntheticData,thecoverimage,andrelatedtradedressaretrademarksofO’ReillyMedia,Inc.
Theviewsexpressedinthisworkarethoseoftheauthor,anddonotrepresentthepublisher’sviews.Whilethepublisherandtheauthorhaveusedgoodfaitheffortstoensurethattheinformationandinstructionscontainedinthisworkareaccurate,thepublisherandtheauthordisclaimallresponsibilityforerrorsoromissions,includ‐ingwithoutlimitationresponsibilityfordamagesresultingfromtheuseoforreli‐anceonthiswork.Useoftheinformationandinstructionscontainedinthisworkisatyourownrisk.Ifanycodesamplesorothertechnologythisworkcontainsordescribesissubjecttoopensourcelicensesortheintellectualpropertyrightsofoth‐ers,itisyourresponsibilitytoensurethatyourusethereofcomplieswithsuchlicen‐sesand/orrights.
ThisworkispartofacollaborationbetweenO’ReillyandNVIDIA.Seeour
state‐
mentofeditorialindependence
.
978-1-492-04596-0
[LSI]
v
TableofContents
1.
DefiningSyntheticData 1
WhatIsSyntheticData?
2
TheBenefitsofSyntheticData
5
LearningtoTrustSyntheticData
9
OtherApproachestoAccessingData
11
GeneratingSyntheticDatafromRealData
12
Conclusions
15
2.
TheSynthesisProcess 17
DataSynthesisProjects
17
TheDataSynthesisPipeline
21
SynthesisProgramManagement
27
BestPracticesforImplementingDataSynthesis
28
Conclusions
30
3.
SyntheticDataCaseStudies 33
ManufacturingandDistribution
34
HealthCare
36
FinancialServices
43
Transportation
46
Conclusions
50
4.
TheFutureofDataSynthesis 51
CreatingaDataUtilityFramework
51
RemovingInformationfromSyntheticData
52
vi|TableofContents
UsingDataWatermarking
53
GeneratingSynthesisfromSimulators
54
Conclusions
55
CHAPTER1
1
DefiningSyntheticData
Interestinsyntheticdatahasbeengrowingquiterapidlyoverthelastfewyears.Thishasbeendrivenbytwosimultaneoustrends.Thefirstisthedemandforlargeamountsofdatatotrainandbuildarti-ficialintelligenceandmachinelearning(AIML)models.Thesecondisrecentworkthathasdemonstratedeffectivemethodstogeneratehigh-qualitysyntheticdata.Bothhaveresultedintherecognitionthatsyntheticdatacansolvesomedifficultproblemsquiteeffec-tively,especiallywithintheAIMLcommunity.Groupsandbusi-nesseswithincompanieslikeNVIDIA,IBM,andAlphabet,aswellasagenciessuchastheUSCensusBureau,haveadopteddifferenttypesofdatasynthesistosupportmodelbuilding,applicationdevel-opment,anddatadissemination.
Thisreportprovidesageneraloverviewofsyntheticdatageneration,withafocusonthebusinessvalueandusecases,andhigh-levelcov-erageoftechniquesandimplementationpractices.Weaimtoanswerthequestionsthatabusinessreaderwouldtypicallyask(andhastypicallyasked),butatthesametimeprovidesomedirectiontoanalyticsleadershipseekingtounderstandtheoptionsavailableandwheretolooktogetstarted.
WeshowhowsyntheticdatacanaccelerateAIMLprojects.Someproblemsthatcanbetackledbyusingsyntheticdatawouldbetoocostlyordangerous(e.g.,inthecaseoftrainingmodelscontrollingautonomousvehicles)tosolveusingmoretraditionalmethods,orsimplycannotbedoneotherwise.
2|Chapter1:DefiningSyntheticData
AIMLprojectsrunindifferentindustries,andthemultipleindustryusecasesthatweincludeinthisreportareintendedtogiveyouaflavorofthebroadapplicationsofdatasynthesis.WedefineanAIMLprojectquitebroadlyaswell,toinclude,forexample,thedevelopmentofsoftwareapplicationsthathaveAIMLcomponents.Thereportisdividedintofourchapters.Thisintroductorychaptercoversbasicconceptsandpresentsthecaseforsyntheticdata.
Chap‐
ter2
presentsthedatasynthesisprocessandpipelines,scalingimplementationintheenterprise,andbestpractices.Aseriesofindustry-specificcasestudiesfollowin
Chapter3
.
Chapter4
isforward-lookingandconsiderswherethistechnologyisheaded.
Inthischapter,westartbydefiningthetypesofsyntheticdata.Thisisfollowedbyadescriptionofthebenefitsofusingsyntheticdata—thetypesofproblemsthatdatasynthesiscansolve.Giventherecentadoptionofthisapproachintopractice,buildingtrustinanalysisresultsfromsyntheticdataisimportant.Wethereforealsopresentexamplessupportingtheutilityofsyntheticdataanddiscussmeth‐odstobuildtrust.
Alternativestodatasynthesisexist,andwepresentthesenextwithanassessmentofstrengthsandweaknesses.Thischapterthencloseswithanoverviewofmethodsforsyntheticdatageneration.
WhatIsSyntheticData?
Ataconceptuallevel,syntheticdataisnotrealdatabutisdatathathasbeengeneratedfromrealdataandthathasthesamestatisticalpropertiesastherealdata.Thismeansthatananalystwhoworkswithasyntheticdatasetshouldgetanalysisresultsthataresimilartothosetheywouldgetwithrealdata.Thedegreetowhichasyn‐theticdatasetisanaccurateproxyforrealdataisameasureofutil-ity.Furthermore,werefertotheprocessofgeneratingsyntheticdataassynthesis.
Datainthiscontextcanmeandifferentthings.Forexample,datacanbestructureddata(i.e.,rowsandcolumns),asonewouldseeinarelationaldatabase.Datacanalsobeunstructuredtext,suchasdoc‐tors’notes,transcriptsofconversationsamongpeopleorwithdigitalassistants,oronlineinteractionsbyemailorchat.Furthermore,images,videos,audio,andvirtualenvironmentsarealsotypesofdatathatcanbesynthesized.Wehaveseenexamplesoffakeimages
WhatIsSyntheticData?|3
inthemachinelearningliterature;forinstance,realisticfacesofpeoplewhodonotexistintherealworldcanbecreated,andyoucan
viewtheresults
online.
Syntheticdataisdividedintotwotypes,basedonwhetheritisgen‐eratedfromactualdatasetsornot.
Thefirsttypeissynthesizedfromrealdatasets.Theanalystwillhavesomerealdatasetsandthenbuildamodeltocapturethedistribu‐tionsandstructureofthatrealdata.Here,structuremeansthemul‐tivariaterelationshipsandinteractionsinthedata.Thenthesyntheticdataissampledorgeneratedfromthatmodel.Ifthemodelisagoodrepresentationoftherealdata,thesyntheticdatawillhavesimilarstatisticalpropertiesastherealdata.
Forexample,adatasciencegroupspecializinginunderstandingcustomerbehaviorswouldneedlargeamountsofdatatobuilditsmodels.Butbecauseofprivacyorotherconcerns,theprocessforgettingaccesstothatcustomerdataisslowanddoesnotprovidegoodenoughdatawhenitdoesarrivebecauseofextensivemaskingandredactionofinformation.Instead,asyntheticversionoftheproductiondatasetscanbeprovidedtotheanalystsforbuildingtheirmodels.Thesynthesizeddatawillhavefewerconstraintsputonitsuseandwouldallowthemtoprogressmorerapidly.
Thesecondtypeofsyntheticdataisnotgeneratedfromrealdata.Itiscreatedbyusingexistingmodelsorbyusingbackgroundknowl‐edgeoftheanalyst.Theseexistingmodelscanbestatisticalmodelsofaprocess(forexample,developedthroughsurveysorotherdatacollectionmechanisms)ortheycanbesimulations.Simulationscanbecreated,forinstance,bygamingenginesthatcreatesimulated(andsynthetic)imagesofscenesorobjects,orbysimulationenginesthatgenerateshopperdatawithparticularcharacteristics(say,ageandgender)ofpeoplewhowalkpastthesiteofaprospectivestoreatdifferenttimesoftheday.
Backgroundknowledgecanbe,forexample,amodelofhowafinancialmarketbehavesbasedontextbookdescriptionsorbasedonthebehaviorsofstockpricesundervarioushistoricalconditions,oritcanbeknowledgeofthestatisticaldistributionofhumantrafficinastorebasedonyearsofexperience.Insuchacase,itisrelativelystraightforwardtocreateamodelandsamplefromittogeneratesyntheticdata.Iftheanalyst’sknowledgeoftheprocessisaccurate,thesyntheticdatawillbehaveinamannerthatisconsistentwith
4|Chapter1:DefiningSyntheticData
real-worlddata.Ofcourse,thisworksonlywhenthephenomenonofinterestistrulywellunderstood.
Asafinalexample,whenaprocessisnewornotwellunderstoodbytheanalystandthereisnorealhistoricaldatatouse,ananalystcanmakesomesimpleassumptionsaboutthedistributionsandcorrela-tionsamongthevariablesinvolvedintheprocess.Forexample,theanalystcanmakeasimplifyingassumptionthatthevariableshavenormaldistributionsand“medium”correlationsamongthem,andcreatedatathatway.Thistypeofdatawilllikelynothavethesamepropertiesasrealdatabutcanstillbeusefulforsomepurposes,suchasdebugginganRdataanalysisprogramorforsometypesofper-formancetestingofsoftwareapplications.
Forsomeusecases,havinghighutilitywillmatterquiteabit.Inothercases,mediumorevenlowutilitymaybeacceptable.Forexample,iftheobjectiveistobuildAIMLmodelstopredictcus-tomerbehaviorandmakemarketingdecisionsbasedonthat,highutilitywillbeimportant.Ontheotherhand,iftheobjectiveistoseeifyoursoftwarecanhandlealargevolumeoftransactions,thedatautilityexpectationswillbeconsiderablyless.Therefore,understand-ingwhatdata,models,simulators,andknowledgeexistaswellastherequirementsfordatautilitywilldrivethespecificapproachtouseforgeneratingthesyntheticdata.
Table1-1
providesasummaryofthesyntheticdatatypes.
Table1-1.Typesofdatasynthesiswiththeirutilityandprivacyimplications
Typeofsyntheticdata
Utility
Generatedfromreal(nonpublic)datasetsGeneratedfromrealpublicdata
Canbequitehigh
Canbehigh,althoughlimitationsexistbecause
publicdatatendstobede-identifiedoraggregated
Generatedfromanexistingmodelofa
process,whichcanalsoberepresentedinasimulationengine
Basedonanalystknowledge
Willdependonthefidelityoftheexistinggeneratingmodel
Willdependonhowwelltheanalystknowsthedomainandthecomplexityofthephenomenon
Generatedfromgenericassumptionsnotspecifictothephenomenon
Willlikelybelow
TheBenefitsofSyntheticData|5
Nowthatyouhaveanunderstandingofthetypesofsyntheticdata,wewilllookatthebenefitsofdatasynthesisoverallandforsomeofthesedatatypesspecifically.
TheBenefitsofSyntheticData
Inthissection,wepresentseveralwaysthatdatasynthesiscansolvepracticalproblemswithAIMLprojects.Thebenefitsofsyntheticdatacanbedramatic.Itcanmakeimpossibleprojectsdoable,signif‐icantlyaccelerateAIMLinitiatives,orresultinmaterialimprove‐mentintheoutcomesofAIMLprojects.
ImprovingDataAccess
DataaccessiscriticaltoAIMLprojects.Thedataisneededtotrainandvalidatemodels.Morebroadly,dataisalsoneededforevaluat‐ingAIMLtechnologiesthathavebeendevelopedbyothers,aswellasfortestingAIMLsoftwareapplicationsorapplicationsthatincor‐porateAIMLmodels.
Typically,dataiscollectedforaparticularpurposewiththeconsentoftheindividual;forexample,forparticipatinginawebinarorforparticipatinginaclinicalresearchstudy.Ifyouwanttousethatsamedataforadifferentpurpose,suchasforbuildingamodeltopredictwhatkindofpersonislikelytosignupforawebinarorwhowouldparticipateinastudy,thenthatisconsideredasecondarypurpose.
Accesstodataforsecondaryanalysisisbecomingproblematic.TheUSGovernmentAccountabilityOffice
1
andtheMcKinseyGlobalInstitute
2
bothnotethataccessingdataforbuildingandtestingAIMLmodelsisachallengefortheiradoptionmorebroadly.ADeloitteanalysisconcludedthatdataaccessissuesarerankedinthetopthreechallengesfacedbycompanieswhenimplementingAI.
3
ArecentsurveyfromMITTechnologyReviewreportedthatalmost
1GovernmentAccountabilityOffice,“ArtificialIntelligence:EmergingOpportunities,Challenges,andImplications,”GAO-18-142SP(March2018).
https://oreil.ly/Cpyli
.
2McKinseyGlobalInstitute,“ArtificialIntelligence:TheNextDigitalFrontier?”(June2017).
https://oreil.ly/zJ8oZ
.
3DeloitteInsights,“StateofAIintheEnterprise,2ndEdition”(2018).
https://oreil.ly/
l07tJ
.
6|Chapter1:DefiningSyntheticData
halfoftherespondentsidentifieddataavailabilityasaconstrainttotheuseofAIwiththeircompany.
4
Atthesametime,thepublicisgettinguneasyabouthowtheirdataisusedandshared,andprivacylawsarebecomingmorestrict.ArecentsurveybyO’Reillyhighligh‐tedtheprivacyconcernsofcompaniesadoptingmachinelearningmodels,withmorethanhalfofcompaniesexperiencedwithAIMLcheckingforprivacyissues.
5
InthesameMITsurveymentionedpreviously,64%ofrespondentsnotethat“changesinregulationorgreaterregulatoryclarityondatasharing”isadevelopmentthatwouldbemostlikelytoleadtomoredatasharing.
Contemporaryprivacyregulations,suchastheUSHealthInsurancePortabilityandAccountabilityAct(HIPAA)andtheGeneralDataProtectionRegulation(GDPR)inEurope,imposeconstraintsorrequirementstousingpersonaldataforasecondarypurpose.Anexampleisarequirementtogetanadditionalconsentorauthoriza‐tionfromindividuals.Inmanycases,thisisnotpracticalandcanintroducebiasintothedatabecauseconsentersandnonconsentersdifferinimportantcharacteristics.
6
Datasynthesiscangivetheanalyst,ratherefficientlyandatscale,realisticdatatoworkwith.Giventhatsyntheticdatawouldnotbeconsideredidentifiablepersonaldata,privacyregulationswouldnotapply,andobligationsofadditionalconsenttousethedataforsec‐ondarypurposeswouldnotberequired.
7
ImprovingDataQuality
Giventhedifficultyingettingaccesstodata,manyanalyststrytojustuseopensourceorpublicdatasets.Thesecanbeagoodstartingpoint,buttheylackdiversityandareoftennotwellmatchedtotheproblemsthatthemodelsareintendedtosolve.Furthermore,open
4MITTechnologyReviewInsights,“TheGlobalAIAgenda:Promise,Reality,andaFutureofDataSharing”(March2020).
https://oreil.ly/FHg87
5BenLoricaandPacoNathan,TheStateofMachineLearningAdoptionintheEnterprise(O’Reilly).
6KhaledElEmam,etal.,“AReviewofEvidenceonConsentBiasinResearch,”AmericanJournalofBioethics13,no.4(2013):42–44.
https://oreil.ly/SiG2N.
7However,oneshouldfollowgoodpractices,suchasprovidingnoticetoindividualsabouthowthedataisusedanddisclosed,andhavingethicsoversightontheusesofdataandAIMLmodels.
TheBenefitsofSyntheticData|7
datamaylacksufficientheterogeneityforrobusttrainingofmodels.Forexample,theymaynotcapturerarecaseswellenough.
Sometimestherealdatathatexistsisnotlabeled.Labelingalargenumberofexamplesforsupervisedlearningtaskscanbetime-consuming,andmanuallabelingiserrorprone.Again,syntheticlabeleddatacanbegeneratedtoacceleratemodeldevelopment.Thesynthesisprocesscanensurehighaccuracyinthelabeling.
UsingSyntheticDataforExploratoryAnalysis
Analystscanusesyntheticdatamodelstovalidatetheirassumptionsanddemonstratethekindofresultsthatcanbeobtainedwiththeirmodels.Inthisway,thesyntheticdatacanbeusedinanexploratorymanner.Knowingthattheyhaveinterestingandusefulresults,theanalystscanthengothroughthemorecomplexprocessofgettingtherealdata(eitherraworde-identified)tobuildthefinalversionsoftheirmodels.
Forexample,ananalystwhoisaresearchercouldusetheirexplora-torymodelsonsyntheticdatatothenapplyforfundingtogetaccesstotherealdata,whichmayrequireafullprotocolandmultiplelev-elsofapprovals.Insuchaninstance,workwithsyntheticdatathatdoesnotproducegoodmodelsoractionableresultswouldstillbebeneficialbecauseanalystswouldhaveavoidedtheextraeffortrequiredtogetaccesstotherealdataforapotentiallyfutileanalysis.Anothervaluableuseofsyntheticdataisfortraininganinitialmodelbeforetherealdataisaccessible.Thenwhentheanalystgetstherealdata,theycanusethetrainedmodelasastartingpointfortrainingwiththerealdata.Thiscansignificantlyexpeditethecon-vergenceoftherealdatamodel(hencereducingcomputetime),andcanpotentiallyresultinamoreaccuratemodel.Thisisanexampleofusingsyntheticdatafortransferlearning.
UsingSyntheticDataforFullAnalysis
Avalidationservercanbedeployedtoruntheanalysiscodethatworkedonthesyntheticdataontherealdata.Ananalystwouldper-formalloftheiranalysisonthesyntheticdata,andthensubmitthecodethatworkedonthesyntheticdatatoasecurevalidationserverthathasaccesstotherealdata,asillustratedin
Figure1-1
.Becausethesyntheticdatawouldbestructuredinthesamewayastheorigi-naldata,thecodethatworkedonthesyntheticdatashouldwork
8|Chapter1:DefiningSyntheticData
directlyontherealdata.Theresultsarethensentbacktotheanalysttoconfirmtheirmodels.
Thisisnotintendedtobeaninteractivesystem.Theoutputfromthevalidationserverneedstobecheckedtoensurethatnorevealinginformationisbeingsentoutbythecodeoutput.Therefore,itisintendedtobeusedonceortwicebytheanalystattheveryendoftheiranalysis.Itdoesprovideawaytoprovideassurancetotheana-lyststhatthesynthesisresultsarereplicableontherealdata.
Figure1-1.Thesetupforavalidationserverusedtoexecutefinalcodethatproducedresultsonthesyntheticdata(adaptedfromReplica
AnalyticsLtd.,withpermission)
Whentheutilityofthesyntheticdataishighenough,theanalystscangetsimilarresultswiththesyntheticdataastheywouldhavewiththerealdata,andnovalidationserverisrequired.Insuchacase,thesyntheticdataplaystheroleofaproxyfortherealdata.Thisscenarioisplayingoutinmoreandmoreusecases:assynthesismethodsimproveovertime,thisproxyoutcomeisgoingtobecomemorecommon.
ReplacingRealDataThatDoesNotExist
Insomesituations,realdatamaynotexist.Theanalystmaybetry-ingtomodelsomethingcompletelynew,orthecreationorcollec-tionofarealdatasetfromscratchmaybecostprohibitiveorimpractical.Synthesizeddatacancoveredgeorrarecasesthataredifficult,impractical,orunethicaltocollectintherealworld.
Syntheticdatacanalsobeusedtoincreasetheheterogeneityofatrainingdataset,whichcanresultinamorerobustAIMLmodel.Forexample,unusualcasesinwhichdatadoesnotexistorisdifficulttocollectcanbesynthesizedandincludedinthetrainingdataset.In
LearningtoTrustSyntheticData|9
thatcase,theutilityofthesyntheticdataismeasuredintherobust‐nessincrementitgivestotheAIMLmodels.
Wehaveseenthatsyntheticdatacanplayakeyroleinsolvingaser‐iesofpracticalproblems.Onecriticalfactorfortheadoptionofdatasynthesis,however,istrustinthegenerateddata.Ithaslongbeenrecognizedthathighdatautilitywillbeneededforthebroadadop‐tionofdatasynthesismethods.
8
Thisisthetopicweturntonext.
LearningtoTrustSyntheticData
Initialinterestinsyntheticdatastartedintheearly’90swithpropos‐alstousemultipleimputationmethodstogeneratesyntheticdata.Imputationingeneralistheprocessofreplacingmissingdatavalueswithestimates.Missingdatacanoccur,forexample,inasurveyifsomerespondentsdonotcompleteaquestionnaire.
Accurateimputeddatarequirestheanalysttobuildamodelofthephenomenonofinterestbyusingtheavailabledataandthenusethatmodeltoestimatewhattheimputedvalueshouldbe.Tobuildavalidimputationmodel,theanalystneedstoknowhowthedatawillbeeventuallyused.Withmultipleimputation,youcreatemultipleimputedvaluestocapturetheuncertaintyintheseestimatedvalues.Thisprocesscanworkreasonablywellifyouknowhowthedatawillbeused.
Inthecontextofusingimputationfordatasynthesis,therealdataisaugmentedwithsyntheticdatabyusingthesametypeofimputationtechniques.Insuchacase,therealdataisusedtobuildanimputa‐tionmodelthatisthenusedtosynthesizenewdata.
Thechallengeisthatifyourimputationmodelsaredifferentfromtheeventualusesofthedata,theimputedvaluesmaynotbeveryreflectiveoftherealvalues,andthiswillintroduceerrorsinthedata.Thisriskofbuildingthewrongsynthesismodelhasledtohistoriccautionintheapplicationofsyntheticdata.
Morerecently,statisticalmachinelearningmodelshavebeenusedfordatasynthesis.Theadvantageofthesemodelsisthattheycancapturethedistributionsandcomplexrelationshipsamongthe
8JeromeP.Reiter,“NewApproachestoDataDissemination:AGlimpseintotheFuture(?),”CHANCE17,no.3(June2004):11–15.
https://oreil.ly/x89Vd
.
10|Chapter1:DefiningSyntheticData
variablesquitewell.Ineffect,theydiscovertheunderlyingmodelinthedataratherthanhavingthatmodelprespecifiedbytheanalyst.Andnowwithdeeplearningdatasynthesis,thesemodelscanbequiteaccurateinthattheycancapturemuchofthesignalinthedata—evensubtlesignals.
Therefore,wearegettingclosertothepointwherethegenerativemodelsavailabletodayareproducingdatasetsthatarebecomingquitegoodproxiesforrealdata.Therearealsowaystoassesstheutilityofsyntheticdatamoreobjectively.
Forexample,wecancomparetheanalysisresultsfromsyntheticdatawiththeanalysisresultsfromtherealdata.Ifwedonotknowwhatanalysiswillbeperformedonthesyntheticdata,arangeofpossibleanalysiscanbetriedbasedonknownexamplesofusesofthatdata.Oran“allmodels”evaluationcanbeperformedinwhichallpossiblemodelsarebuiltfromtherealandsyntheticdatasetsandcompared.
9
TheUSCensusBureauhas,atthetimeofwriting,decidedtolever‐agesyntheticdataforsomeofitsmostheavilyusedpublicdatasets,the2020decennialcensusdata.Foritstabulardatadisseminations,theagencywillcreateasyntheticdatasetfromthecollectedindividual-levelcensusdataandthenproducethepublictabulationsfromthatsyntheticdataset.Amixtureofformalandnonformalmethodswillbeusedinthesynthesisprocess.
10
Weprovideanover‐viewofthesynthesisprocessin
Chapter2
.This,arguably,demon‐stratesthelarge-scaleadoptionofdatasynthesisforoneofthemostcriticalandheavilyuseddatasetsavailabletoday.
Asorganizationsbuildtrustinsyntheticdata,theywillmovefromexploratoryanalysisusecases,totheuseofavalidationserver,andthentousingsyntheticdataasaproxyforrealdata.
Alegitimatequestioniswhataretheotherapproachesthatareavail‐abletodaytoaccessdataforAIMLpurposes,inadditiontodata
9AreviewofutilityassessmentapproachescanbefoundinKhaledElEmam,“Seven
WaystoEvaluat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 德陽促銷活動方案
- 開展女性朗讀活動方案
- 德育論壇活動方案
- 2025年音響調(diào)音員(高級)音響設(shè)備租賃與銷售合同終止考試試卷
- 開展自我研討活動方案
- 徐州排球團建活動方案
- 心理援助志愿活動方案
- 心理參觀活動方案
- 影子征集活動方案
- 徐州市文旅惠民活動方案
- 中醫(yī)茶飲培訓(xùn)課件模板
- (湖北省高考卷)2024年湖北省普通高中學(xué)業(yè)水平選擇性考試高考物化生+政史地真題試卷及答案
- 2024-2025學(xué)年人教PEP英語六年級下學(xué)期期末模擬試卷(含答案含聽力原文無音頻)
- T/CCBD 19-2022品牌餐廳評價規(guī)范
- GSK質(zhì)量管理體系介紹培訓(xùn)課件
- 學(xué)生宿舍改造設(shè)計方案
- 出國培訓(xùn)考試試題及答案
- 2025年中國樂器網(wǎng)數(shù)據(jù)監(jiān)測研究報告
- 西方文化導(dǎo)論試題及答案
- 2025-2030中國毛衣市場調(diào)研及重點企業(yè)投資評估規(guī)劃分析研究報告
- 2025學(xué)習(xí)通《形勢與政策》章節(jié)測試題庫及答案
評論
0/150
提交評論