湖北省七市教科研協作體2024屆高三下5月階段性檢測試題數學試題_第1頁
湖北省七市教科研協作體2024屆高三下5月階段性檢測試題數學試題_第2頁
湖北省七市教科研協作體2024屆高三下5月階段性檢測試題數學試題_第3頁
湖北省七市教科研協作體2024屆高三下5月階段性檢測試題數學試題_第4頁
湖北省七市教科研協作體2024屆高三下5月階段性檢測試題數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省七市教科研協作體2023屆高三下5月階段性檢測試題數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數中,在區間上單調遞減的是()A. B. C. D.2.射線測厚技術原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數的底數,為被測物厚度,為被測物的密度,是被測物對射線的吸收系數.工業上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質厚度,,結果精確到0.001)A.0.110 B.0.112 C. D.3.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.4.中國古代數學名著《九章算術》中記載了公元前344年商鞅督造的一種標準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.45.已知函數,給出下列四個結論:①函數的值域是;②函數為奇函數;③函數在區間單調遞減;④若對任意,都有成立,則的最小值為;其中正確結論的個數是()A. B. C. D.6.設命題p:>1,n2>2n,則p為()A. B.C. D.7.設是虛數單位,,,則()A. B. C.1 D.28.已知,且,則在方向上的投影為()A. B. C. D.9.已知集合,,則=()A. B. C. D.10.設,是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④11.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數據分析、機器學習、服務器開發五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種12.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統計圖如下面的折線圖.已知目前的月就醫費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元二、填空題:本題共4小題,每小題5分,共20分。13.中,角的對邊分別為,且成等差數列,若,,則的面積為__________.14.已知內角,,的對邊分別為,,.,,則_________.15.(5分)函數的定義域是____________.16.設為橢圓在第一象限上的點,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若,解關于的不等式;(2)若當時,恒成立,求實數的取值范圍.18.(12分)選修4—5;不等式選講.已知函數.(1)若的解集非空,求實數的取值范圍;(2)若正數滿足,為(1)中m可取到的最大值,求證:.19.(12分)在銳角三角形中,角的對邊分別為.已知成等差數列,成等比數列.(1)求的值;(2)若的面積為求的值.20.(12分)已知函數,.(1)求曲線在點處的切線方程;(2)求函數的單調區間;(3)判斷函數的零點個數.21.(12分)選修4-5:不等式選講已知函數的最大值為3,其中.(1)求的值;(2)若,,,求證:22.(10分)已知函數,曲線在點處的切線方程為求a,b的值;證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

由每個函數的單調區間,即可得到本題答案.【詳解】因為函數和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數的單調區間,屬基礎題.2.C【解析】

根據題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數為.故選:C【點睛】本題主要考查知識的遷移能力,把數學知識與物理知識相融合;重點考查指數型函數,利用指數的相關性質來研究指數型函數的性質,以及解指數型方程;屬于中檔題.3.A【解析】

由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質,屬于基礎題.4.D【解析】

根據三視圖即可求得幾何體表面積,即可解得未知數.【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎題.5.C【解析】

化的解析式為可判斷①,求出的解析式可判斷②,由得,結合正弦函數得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數,故②錯誤;當時,,單調遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數的綜合運用,涉及到函數的值域、函數單調性、函數奇偶性及函數最值等內容,是一道較為綜合的問題.6.C【解析】根據命題的否定,可以寫出:,所以選C.7.C【解析】

由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.【點睛】本題考查了復數的運算,考查了復數相等的涵義.對于復數的運算類問題,易錯點是把當成進行運算.8.C【解析】

由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點睛】本題考查向量的數量積與投影.掌握向量垂直與數量積的關系是解題關鍵.9.C【解析】

計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學生的計算能力.10.C【解析】

根據線面平行或垂直的有關定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯②:因為,,所以或,因為,所以,故②對③:或,故③錯④:如圖因為,,在內過點作直線的垂線,則直線,又因為,設經過和相交的平面與交于直線,則又,所以因為,,所以,所以,故④對.故選:C【點睛】考查線面平行或垂直的判斷,基礎題.11.B【解析】

將人臉識別方向的人數分成:有人、有人兩種情況進行分類討論,結合捆綁計算出不同的分配方法數.【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數學思想方法,屬于基礎題.12.D【解析】

設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可.【詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點睛】本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】

由A,B,C成等差數列得出B=60°,利用正弦定理得進而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點睛】本題考查了等差數列的性質,三角形的面積公式,考查正弦定理的應用,屬于基礎題.14.【解析】

利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【詳解】由正弦定理得,,.故答案為:.【點睛】本題考查了正弦定理求角,三角恒等變換,屬于基礎題.15.【解析】

要使函數有意義,則,即,解得,故函數的定義域是.16.【解析】

利用橢圓的參數方程,將所求代數式的最值問題轉化為求三角函數最值問題,利用兩角和的正弦公式和三角函數的性質,以及求導數、單調性和極值,即可得到所求最小值.【詳解】解:設點,,其中,,由,,,可設,導數為,由,可得,可得或,由,,可得,即,可得,由可得函數遞減;由,可得函數遞增,可得時,函數取得最小值,且為,則的最小值為1.故答案為:1.【點睛】本題考查橢圓參數方程的應用,利用三角函數的恒等變換和導數法求函數最值的方法,考查化簡變形能力和運算能力,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)利用零點分段法將表示為分段函數的形式,由此求得不等式的解集.(2)對分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當時,,由此可知,的解集為(2)當時,的最小值為和中的最小值,其中,.所以恒成立.當時,,且,不恒成立,不符合題意.當時,,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點睛】本小題主要考查絕對值不等式的解法,考查根據絕對值不等式恒成立求參數的取值范圍,考查分類討論的數學思想方法,屬于中檔題.18.(1);(2)見解析.【解析】試題分析:(1)討論三種情況去絕對值符號,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因為,要證,只需證,即證,只需證即可得結果.試題解析:(1)去絕對值符號,可得所以,所以,解得,所以實數的取值范圍為.(2)由(1)知,,所以.因為,所以要證,只需證,即證,即證.因為,所以只需證,因為,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設:證明:x+y-2xy==令,∴原式====當時,19.(1);(2).【解析】

(1)根據成等差數列與三角形內角和可知,再利用兩角和的正切公式,代入化簡可得,同理根據三角形內角和與余弦的兩角和公式與等比數列的性質可求得,聯立即可求解求的值.(2)由(1)可知,再根據同角三角函數的關系與正弦定理可求得,再結合的面積為利用面積公式求解即可.【詳解】解:成等差數列,可得而,即,展開化簡得,因為,故①又成等比數列,可得,即,可得聯立解得(負的舍去),可得銳角;由可得,由為銳角,解得,因為為銳角,故可得,由正弦定理可得,又的面積為可得,解得.【點睛】本題主要考查了等差等比中項的運用以及正切的和差角公式以及同角三角函數關系等.同時也考查了正弦定理與面積公式在解三角形中的運用,屬于中檔題.20.(1)(2)答案見解析(3)答案見解析【解析】

(1)設曲線在點,處的切線的斜率為,可求得,,利用直線的點斜式方程即可求得答案;(2)由(Ⅰ)知,,分時,,三類討論,即可求得各種情況下的的單調區間為;(3)分與兩類討論,即可判斷函數的零點個數.【詳解】(1),,設曲線在點,處的切線的斜率為,則,又,曲線在點,處的切線方程為:,即;(2)由(1)知,,故當時,,所以在上單調遞增;當時,,;,,;的遞減區間為,遞增區間為,;當時,同理可得的遞增區間為,遞減區間為,;綜上所述,時,單調遞增為,無遞減區間;當時,的遞減區間為,遞增區間為,;當時,的遞增區間為,遞減區間為,;(3)當時,恒成立,所以無零點;當時,由,得:,只有一個零點.【點睛】本題考查利用導數研究曲線上某點的切線方程,利用導數研究函數的單調性,考查分類討論思想與推理、運算能力,屬于中檔題.21.(1)(2)見解析【解析】

(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉化為2ab≥1,再構造函數利用導數判斷單調性求出最小值可證.【詳解】(1)∵,∴.∴當時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當且僅當時等號成立,∴.令,.則在上單調遞減.∴.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論