齊魯名校大聯(lián)考2025屆山東省高三第六次學(xué)業(yè)水平聯(lián)合檢測(cè)數(shù)學(xué)試卷(含答案)_第1頁(yè)
齊魯名校大聯(lián)考2025屆山東省高三第六次學(xué)業(yè)水平聯(lián)合檢測(cè)數(shù)學(xué)試卷(含答案)_第2頁(yè)
齊魯名校大聯(lián)考2025屆山東省高三第六次學(xué)業(yè)水平聯(lián)合檢測(cè)數(shù)學(xué)試卷(含答案)_第3頁(yè)
齊魯名校大聯(lián)考2025屆山東省高三第六次學(xué)業(yè)水平聯(lián)合檢測(cè)數(shù)學(xué)試卷(含答案)_第4頁(yè)
齊魯名校大聯(lián)考2025屆山東省高三第六次學(xué)業(yè)水平聯(lián)合檢測(cè)數(shù)學(xué)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第=page11頁(yè),共=sectionpages11頁(yè)齊魯名校大聯(lián)考2025屆山東省高三第六次學(xué)業(yè)水平聯(lián)合檢測(cè)數(shù)學(xué)試卷一、單選題:本大題共8小題,共40分。1.已知2+i1?i=a+bi(a,b∈R),則ab=(

)A.3 B.?3 C.34 D.2.已知集合A={x|x+1x3≥0},B={x|x≤a},若(?RA.[0,+∞) B.(0,+∞) C.(?∞,?1) D.(?∞,?1]3.已知△ABC的面積為4,在平面ABC內(nèi),將△ABC繞A點(diǎn)旋轉(zhuǎn)180°得到對(duì)應(yīng)的△AB1C1,則A.2 B.4 C.6 D.84.已知圓C1:x2+y2=1與圓C2:(x?3)2+yA.9π B.12π C.16π D.18π5.已知sin(α+π3)=1A.?79 B.37 C.?6.已知直線l:y=12x與雙曲線C:x24?y2b2=1(b>0)A.52 B.62 C.7.若方程x2?2x+2?1=0A.(0,1) B.(0,2) C.(2,0) D.(2,1)8.若定義在D上的函數(shù)f(x),?x1,x2,x3∈D,f(x1),f(x2),f(x3)可以作為一個(gè)三角形的三條邊長(zhǎng),則稱f(x)A.(2e2+2e,+∞) B.(2二、多選題:本大題共3小題,共18分。9.如圖是2024年11月27日國(guó)家統(tǒng)計(jì)局發(fā)布的2023年1?10月到2024年1?10月的各月累計(jì)營(yíng)業(yè)收入與利潤(rùn)總額同比增速的折線圖,則(

)A.累計(jì)營(yíng)業(yè)收入同比增速的方差大于累計(jì)利潤(rùn)總額同比增速的方差

B.累計(jì)利潤(rùn)總額同比增速的極差為18

C.累計(jì)營(yíng)業(yè)收入同比增速的眾數(shù)為2.9

D.累計(jì)利潤(rùn)總額同比增速的40%分位數(shù)為?2.310.在棱長(zhǎng)為2的正方體ABCD?A1B1C1D1中,E為ABA.平面APC1⊥平面A1BD

B.若四面體A1?BDC1的四個(gè)頂點(diǎn)均在球O的表面上,則球O的表面積為48π

C.當(dāng)點(diǎn)P在線段BC1上運(yùn)動(dòng)時(shí),異面直線A1P與AD11.已知互不相等的正實(shí)數(shù)ai∈{1,2,3,4}(i=1,2,3,4),ai1,ai2,ai3,ai4是a1,a2,aA.P(X>Y)=13 B.P(X>Y)=14

C.三、填空題:本大題共3小題,共15分。12.已知向量a=(2m+1,?1),b=(m,m+1),若a⊥b,則m的值為13.“曼哈頓距離”是一種在幾何空間中用于衡量?jī)牲c(diǎn)之間距離的方式,如在n維空間中,設(shè)點(diǎn)A(x1,x2,?,xn),B(y1,y2,?,yn),則“曼哈頓距離”表示為d(A,B)=i=1n|xi?yi|,若橢圓C:x2214.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(5π12)=0,當(dāng)x=?π3時(shí),f(x)取得最值,且當(dāng)x∈(?π四、解答題:本題共5小題,共77分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟。15.記數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1(1)求{an(2)記f(n)=Sn?2n,是否存在實(shí)數(shù)k,使得f(n)=k有兩個(gè)解?若存在,求出16.新高考模式的選科是按物理類與歷史類兩大塊組合進(jìn)行,即物理與歷史必選一科,再?gòu)幕瘜W(xué)、生物、地理、政治四個(gè)學(xué)科中任選兩科,加上語(yǔ)文、數(shù)學(xué)、英語(yǔ)組成一種組合,簡(jiǎn)稱“物理類”與“歷史類”.為了解選科組合是否與性別有關(guān),某機(jī)構(gòu)隨機(jī)選取了100名學(xué)生,進(jìn)行了問(wèn)卷調(diào)查,得到如下的2×2列聯(lián)表:性別選科組合合計(jì)物理類歷史類男生40女生30合計(jì)已知在這100名學(xué)生中隨機(jī)抽取1人,抽到選物理類學(xué)生的概率為0.6.(1)完成表中數(shù)據(jù),并根據(jù)小概率值α=0.005的獨(dú)立性檢驗(yàn),判斷選科組合是否與性別有關(guān);(2)從上述選物理類的學(xué)生中利用分層隨機(jī)抽樣的方法抽取6人,再?gòu)?人中隨機(jī)抽取4人調(diào)查其選物理類的原因.(ⅰ)用X表示這4人中男生的人數(shù),求X的分布列及數(shù)學(xué)期望;(ⅱ)已知這4人中有女生的條件下,求男生、女生人數(shù)不相等的概率.附:χ2=n(ad?bcα0.10.050.005x2.7063.8417.87917.如圖,已知正方形ABCD與矩形ACEF所在的平面互相垂直,AB=2,AF=1,點(diǎn)M在線段EF上運(yùn)動(dòng).

(1)若AM//平面BDE,求MFEF的值(2)求三棱錐M?ABD的體積;(3)當(dāng)FM=2ME時(shí),求平面BDM與平面BDF18.已知橢圓M:x2a2+y2b(1)求M的方程;(2)設(shè)直線l:y=kx+2與M相交于不同的兩點(diǎn)C,D.(ⅰ)點(diǎn)C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為C′,直線DC′的斜率為k′,證明:kk′為定值;(ⅱ)當(dāng)|CD|=2413時(shí),求k19.“拉格朗日中值定理”是法國(guó)數(shù)學(xué)家拉格朗日在其著作《解析函數(shù)論》中給出的,其內(nèi)容為若函數(shù)y=f(x)滿足如下條件:?①在區(qū)間[a,b]上的圖象是連續(xù)的;?②在區(qū)間(a,b)上可導(dǎo),則在區(qū)間(a,b)上至少存在一個(gè)實(shí)數(shù)ξ,使得f(b)?f(a)b?a=f′(ξ)成立.已知函數(shù)f(x)=(1)?a,b∈(0,+∞),且a<b,若f(a)?f(b)a?b≥1恒成立,求m(2)當(dāng)m=?32時(shí),是否存在區(qū)間[a,b](a>0),使f(a)+f(b)2>f((3)當(dāng)m<?1時(shí),設(shè)f(x)的兩個(gè)極值點(diǎn)為x1,x2,且x1<x參考答案1.C

2.A

3.B

4.A

5.D

6.C

7.B

8.A

9.BCD

10.ACD

11.ACD

12.±13.8314.4

15.解:(1)∵數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,數(shù)列{an?2n+2}是公比為2的等比數(shù)列.

∴an?2n+2=(a1?2×1+2)2n?1=2n?1?an16.解:(1)因?yàn)樵谶@100名學(xué)生中隨機(jī)抽取1人,抽到選物理類學(xué)生的概率為0.6,

所以選物理類學(xué)生的人數(shù)為0.6×100=60,因此完成2×2列聯(lián)表如下:性別選科組合合計(jì)物理類歷史類男生401050女生203050合計(jì)6040100零假設(shè)H0:選科組合與性別無(wú)關(guān).

因?yàn)棣?=10040×30?20×10260×40×50×50=503≈16.667>7.879,

所以根據(jù)小概率值α=0.005的獨(dú)立性檢驗(yàn)得零假設(shè)H0不成立,

因此選科組合與性別有關(guān).

(2)(ⅰ)從選物理類的學(xué)生中利用分層隨機(jī)抽樣的方法抽取6人,則男生的人數(shù)為4,女生的人數(shù)為2,

因此再?gòu)某槿〉?人中隨機(jī)抽取4人調(diào)查其選物理類的原因,則X的取值為:2、3、4.X234P281因此EX=2×25+3×815+4×115=83.

(ⅱ)設(shè)“4人中有女生”為事件A,“男生、女生人數(shù)不相等”為事件B,

則由17.解:1連接AC,BD,交于點(diǎn)O,連接OE。

因?yàn)檎叫蜛BCD,所以O(shè)是AC中點(diǎn),又矩形ACEF,則OE?平面BDE。

若AM//平面BDE,AM?平面ACEF,平面ACEF∩平面BDE=OE,

根據(jù)線面平行的性質(zhì)定理可得AM//OE。因?yàn)镺是AC中點(diǎn),所以M是EF中點(diǎn),所以MFEF=12。

2因?yàn)檎叫蜛BCD與矩形ACEF所在平面互相垂直,平面ABCD∩平面ACEF=AC,AF⊥AC,

AF?平面ACEF,根據(jù)面面垂直的性質(zhì)定理可知AF⊥平面ABCD。

點(diǎn)M在線段EF上運(yùn)動(dòng),EF//AC,所以M到平面ABD的距離等于F到平面ABD的距離,即?=AF=1。

正方形ABCD中,AB=2,則S△ABD=12×AB×AD=12×2×2=2。

根據(jù)三棱錐體積公式VM?ABD=13S△ABD??,

可得VM?ABD=13×2×1=23。

3以C為原點(diǎn),分別以CD,CB,CE所在直線為x,y,z軸建立空間直角坐標(biāo)系。

則D(2,0,0),B(0,2,0),F(xiàn)(2,2,1)。因?yàn)镕M=2ME,E(0,0,1),設(shè)M(x,y,z),F(xiàn)M=(x?2,y?2,z?1),

ME=(?x,?y,1?z),可得x?2=?2xy?2=?2yz?1=2(1?z)解得x=23y=23,z=1即M(23,23,1)。

所以BD=(2,?2,0),BF=(2,0,1),BM=(23,?18.解:(1)因?yàn)闄E圓M的離心率為32,M上的點(diǎn)與其中一個(gè)焦點(diǎn)的距離的最小值為2?3,

所以ca=32a?c=2?3,解得a=2c=3,因此b2=a2?c2=1,所以橢圓M的方程為x24+y2=1.

(2)(ⅰ)設(shè)Cx1,y1、Dx2,y2.

由y=kx+2x24+y2=1得1+4k2x2+16kx+12=0,

因此由Δ=16k2?481+4k2=64k2?48>0得k2>34,且x1+x2=?16k1+4k2、x1x2=1219.解:(1)根據(jù)“拉格朗日中值定理”在區(qū)間(a,b)上可導(dǎo),

則在區(qū)間(a,b)上至少存在一個(gè)實(shí)數(shù)ξ,使得f(b)?f(a)b?a=f′(ξ)成立,

?a,b∈(0,+∞),且a<b,若f(a)?f(b)a?b≥1恒成立,

即?x∈(0,+∞),均有f′(x)>1,

由f(x)=ex?x2+mx,得f′(x)=ex?2x+m,

所又ex?2x+m>1在(0,+∞)恒成立,

令g(x)=ex?2x+m?1,則g′(x)=ex?2,

從而由g′(x)>0,得x>ln2,由g′(x)<0,得x>ln2,

所以g(x)=ex?2x+m?1在(?∞,ln2)上遞減,在(ln2,+∞)遞增,

所以g(x)=ex?2x+m?1有最小值g(ln2)=1?2ln2+m,

據(jù)題意1?2ln2+m>0,

所以m>2ln2?1;

(2)m=?32時(shí),f(x)=ex?x2?32x,則f′(x)=ex?2x?32,

令?(x)=f′(x)=ex?2x?32,定義域?yàn)?0,+∞),

則?′(x)=ex?2,當(dāng)x∈(0,ln2)時(shí),?′(x)<0,?(x)單調(diào)遞減;

當(dāng)x∈(ln2,+∞)時(shí)?′(x)>0,?(x)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論