




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省武漢十二中學2024屆中考數學模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.﹣的相反數是()A.8 B.﹣8 C. D.﹣2.在下列實數中,﹣3,,0,2,﹣1中,絕對值最小的數是()A.﹣3 B.0 C. D.﹣13.下列是我國四座城市的地鐵標志圖,其中是中心對稱圖形的是()A. B. C. D.4.化簡÷的結果是()A. B. C. D.2(x+1)5.已知函數,則使y=k成立的x值恰好有三個,則k的值為()A.0 B.1 C.2 D.36.在剛過去的2017年,我國整體經濟實力躍上了一個新臺階,城鎮新增就業1351萬人,數據“1351萬”用科學記數法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1087.平面直角坐標系內一點關于原點對稱點的坐標是()A. B. C. D.8.為了解中學300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數據整理后,畫出頻數分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數有()A.12 B.48 C.72 D.969.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規律繼續下去,則S2018的值為()A. B. C. D.10.據媒體報道,我國最新研制的“察打一體”無人機的速度極快,經測試最高速度可達204000米/分,這個數用科學記數法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×106二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.12.如果一個三角形有一條邊上的高等于這條邊的一半,那么我們把這個三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜邊AB=5,則它的周長等于_____.13.如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,4),則點B4的坐標為_____,點B2017的坐標為_____.14.若反比例函數y=的圖象與一次函數y=x+k的圖象有一個交點為(m,﹣4),則這個反比例函數的表達式為_____.15.若正n邊形的內角為,則邊數n為_____________.16.如果a是不為1的有理數,我們把稱為a的差倒數如:2的差倒數是,-1的差倒數是,已知,是的差倒數,是的差倒數,是的差倒數,…,依此類推,則___________.17.如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點P是CD中點,BP與半圓交于點Q,連結DQ.給出如下結論:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正確結論是_________.(填寫序號)三、解答題(共7小題,滿分69分)18.(10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.19.(5分)一道選擇題有四個選項.(1)若正確答案是,從中任意選出一項,求選中的恰好是正確答案的概率;(2)若正確答案是,從中任意選擇兩項,求選中的恰好是正確答案的概率.20.(8分)為了提高服務質量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?21.(10分)計算:|﹣1|+(﹣1)2018﹣tan60°22.(10分)如圖,已知,請用尺規過點作一條直線,使其將分成面積比為兩部分.(保留作圖痕跡,不寫作法)23.(12分)2019年我市在“展銷會”期間,對周邊道路進行限速行駛.道路AB段為監測區,C、D為監測點(如圖).已知C、D、B在同一條直線上,且,CD=400米,,.求道路AB段的長;(精確到1米)如果AB段限速為60千米/時,一輛車通過AB段的時間為90秒,請判斷該車是否超速,并說明理由.(參考數據:,,)24.(14分)如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;(2)將△ABC繞原點O逆時針旋轉90°后得到△A2B2C2,請畫出△A2B2C2;(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】互為相反數的兩個數是指只有符號不同的兩個數,所以的相反數是,故選C.2、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數是0,故選:B.3、D【解析】
根據中心對稱圖形的定義解答即可.【詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關鍵.4、A【解析】
原式利用除法法則變形,約分即可得到結果.【詳解】原式=?(x﹣1)=.故選A.【點睛】本題考查了分式的乘除法,熟練掌握運算法則是解答本題的關鍵.5、D【解析】
解:如圖:利用頂點式及取值范圍,可畫出函數圖象會發現:當x=3時,y=k成立的x值恰好有三個.故選:D.6、B【解析】
根據科學記數法進行解答.【詳解】1315萬即13510000,用科學記數法表示為1.351×107.故選擇B.【點睛】本題主要考查科學記數法,科學記數法表示數的標準形式是a×10n(1≤│a│<10且n為整數).7、D【解析】
根據“平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y),即關于原點的對稱點,橫縱坐標都變成相反數”解答.【詳解】解:根據關于原點對稱的點的坐標的特點,∴點A(-2,3)關于原點對稱的點的坐標是(2,-3),故選D.【點睛】本題主要考查點關于原點對稱的特征,解決本題的關鍵是要熟練掌握點關于原點對稱的特征.8、C【解析】
解:根據圖形,身高在169.5cm~174.5cm之間的人數的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數有300×24%=72(人).故選C.9、A【解析】
根據等腰直角三角形的性質可得出2S2=S1,根據數的變化找出變化規律“Sn=()n﹣2”,依此規律即可得出結論.【詳解】如圖所示,∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.觀察,發現規律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n﹣2.當n=2018時,S2018=()2018﹣2=()3.故選A.【點睛】本題考查了等腰直角三角形的性質、勾股定理,解題的關鍵是利用圖形找出規律“Sn=()n﹣2”.10、C【解析】試題分析:204000米/分,這個數用科學記數法表示2.04×105,故選C.考點:科學記數法—表示較大的數.二、填空題(共7小題,每小題3分,滿分21分)11、22.5°【解析】
四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質;等腰三角形的性質.12、5+3或5+5.【解析】
分兩種情況討論:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分別依據勾股定理和三角形的面積公式,即可得到該三角形的周長為5+3或5+5.【詳解】由題意可知,存在以下兩種情況:(1)當一條直角邊是另一條直角邊的一半時,這個直角三角形是半高三角形,此時設較短的直角邊為a,則較長的直角邊為2a,由勾股定理可得:,解得:,∴此時較短的直角邊為,較長的直角邊為,∴此時直角三角形的周長為:;(2)當斜邊上的高是斜邊的一半是,這個直角三角形是半高三角形,此時設兩直角邊分別為x、y,這有題意可得:①,②S△=,∴③,由①+③得:,即,∴,∴此時這個直角三角形的周長為:.綜上所述,這個半高直角三角形的周長為:或.故答案為或.【點睛】(1)讀懂題意,弄清“半高三角形”的含義是解題的基礎;(2)根據題意,若直角三角形是“半高三角形”,則存在兩種情況:①一條直角邊是另一條直角邊的一半;②斜邊上的高是斜邊的一半;解題時這兩種情況都要討論,不要忽略了其中一種.13、(20,4)(10086,0)【解析】
首先利用勾股定理得出AB的長,進而得出三角形的周長,進而求出B2,B4的橫坐標,進而得出變化規律,即可得出答案.【詳解】解:由題意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的橫坐標為:10,B4的橫坐標為:2×10=20,B2016的橫坐標為:×10=1.∵B2C2=B4C4=OB=4,∴點B4的坐標為(20,4),∴B2017的橫坐標為1++=10086,縱坐標為0,∴點B2017的坐標為:(10086,0).故答案為(20,4)、(10086,0).【點睛】本題主要考查了點的坐標以及圖形變化類,根據題意得出B點橫坐標變化規律是解題的關鍵.14、y=﹣.【解析】
把交點坐標代入兩個解析式組成方程組,解方程組求得k,即可求得反比例函數的解析式.【詳解】解:∵反比例函數y=的圖象與一次函數y=x+k的圖象有一個交點為(m,﹣4),∴,解得k=﹣5,∴反比例函數的表達式為y=﹣,故答案為y=﹣.【點睛】本題考查了反比例函數與一次函數的交點問題,根據圖象上點的坐標特征得出方程組是解題的關鍵.15、9【解析】分析:根據正多邊形的性質:正多邊形的每個內角都相等,結合多邊形內角和定理列出方程進行解答即可.詳解:由題意可得:140n=180(n-2),解得:n=9.故答案為:9.點睛:本題解題的關鍵是要明白以下兩點:(1)正多邊形的每個內角相等;(2)n邊形的內角和=180(n-2).16、.【解析】
利用規定的運算方法,分別算得a1,a2,a3,a4…找出運算結果的循環規律,利用規律解決問題.【詳解】∵a1=4a2=,a3=,a4=,…數列以4,?三個數依次不斷循環,∵2019÷3=673,∴a2019=a3=,故答案為:.【點睛】此題考查規律型:數字的變化類,倒數,解題關鍵在于掌握運算法則找到規律.17、①②④【解析】
①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1;
②連接AQ,如圖4,根據勾股定理可求出BP.易證Rt△AQB∽Rt△BCP,運用相似三角形的性質可求出BQ,從而求出PQ的值,就可得到的值;③過點Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運用相似三角形的性質可求出QH,從而可求出S△DPQ的值;④過點Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據平行線分線段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中運用三角函數的定義,就可求出cos∠ADQ的值.【詳解】解:①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1.故①正確;②連接AQ,如圖4.則有CP=,BP=.易證Rt△AQB∽Rt△BCP,運用相似三角形的性質可求得BQ=,則PQ=,∴.故②正確;③過點Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運用相似三角形的性質可求得QH=,∴S△DPQ=DP?QH=××=.故③錯誤;④過點Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據平行線分線段成比例可得,則有,解得:DN=.由DQ=1,得cos∠ADQ=.故④正確.綜上所述:正確結論是①②④.故答案為:①②④.【點睛】本題主要考查了圓周角定理、平行四邊形的判定與性質、相似三角形的判定與性質、全等三角形的判定與性質、平行線分線段成比例、等腰三角形的性質、平行線的性質、銳角三角函數的定義、勾股定理等知識,綜合性比較強,常用相似三角形的性質、勾股定理、三角函數的定義來建立等量關系,應靈活運用.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)CE=1.【解析】
(1)根據等角對等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據內錯角相等,兩直線平行可得OE∥BC,根據兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.
(2)根據垂徑定理可求BH=BF=3,根據三個角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長,從而求出CE的長.【詳解】(1)證明:如圖,連接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=∠ACB=90°,
∴AC是⊙O的切線.
(2)解:過O作OH⊥BF,
∴BH=BF=3,四邊形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.【點睛】本題考查切線的判定定理:經過半徑的外端且垂直于這條半徑的直線是圓的切線和垂徑定理以及勾股定理的運用,具有一定的綜合性.19、(1);(2)【解析】
(1)直接利用概率公式求解;
(2)畫樹狀圖展示所有12種等可能的結果數,再找出選中的恰好是正確答案A,B的結果數,然后根據概率公式求解.【詳解】解:(1)選中的恰好是正確答案A的概率為;
(2)畫樹狀圖:
共有12種等可能的結果數,其中選中的恰好是正確答案A,B的結果數為2,
所以選中的恰好是正確答案A,B的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.20、(1)甲、乙兩種套房每套提升費用為25、1萬元;(2)甲種套房提升2套,乙種套房提升30套時,y最小值為2090萬元.【解析】
(1)設甲種套房每套提升費用為x萬元,根據題意建立方程求出其解即可;(2)設甲種套房提升m套,那么乙種套房提升(80-m)套,根據條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數關系式,根據一次函數的性質就可以求出結論.【詳解】(1)設乙種套房提升費用為x萬元,則甲種套房提升費用為(x﹣3)萬元,則,解得x=1.經檢驗:x=1是分式方程的解,答:甲、乙兩種套房每套提升費用為25、1萬元;(2)設甲種套房提升a套,則乙種套房提升(80﹣a)套,則2090≤25a+1(80﹣a)≤2096,解得48≤a≤2.∴共3種方案,分別為:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升31套,方案三:甲種套房提升2套,乙種套房提升30套.設提升兩種套房所需要的費用為y萬元,則y=25a+1(80﹣a)=﹣3a+2240,∵k=﹣3,∴當a取最大值2時,即方案三:甲種套房提升2套,乙種套房提升30套時,y最小值為2090萬元.【點睛】本題考查了一次函數的性質的運用,列分式方程解實際問題的運用,列一元一次不等式組解實際問題的運用.解答時建立方程求出甲,乙兩種套房每套提升費用是關鍵,是解答第二問的必要過程.21、1【解析】
原式利用絕對值的代數意義,乘方的意義,以及特殊角的三角函數值計算即可求出值.【詳解】|﹣1|+(﹣1)2118﹣tan61°=﹣1+1﹣=1.【點睛】本題考查了實數的運算,涉及了絕對值化簡、特殊角的三角函數值,熟練掌握各運算的運算法則是解題的關鍵.22、詳見解析【解析】
先作出AB的垂直平分線,而AB的垂直平分線交AB于D,再作出AD的垂直平分線,而AD的垂直平分線交AD于E,即可得到答案.【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三級數據庫考試知識網絡試題及答案
- 學校扶貧部門管理制度
- 公路工程多媒體展示技術試題及答案
- 公司疫情門衛管理制度
- 庫房存儲安全管理制度
- 安全生產瓦斯管理制度
- 安全監測設施管理制度
- 工廠配件領用管理制度
- 公路交通組織設計試題及答案
- 前臺工作安全管理制度
- 中國共產主義青年團紀律處分條例試行解讀學習
- 三方水泥合同協議
- 江蘇省南通市如皋市八校2025屆初三下學期教育質量調研(二模)化學試題含解析
- 2025至2030年抗應激添加劑項目投資價值分析報告
- 23《“蛟龍”探?!饭_課一等獎創新教學設計
- 研學部管理制度
- 課題申報書:職業教育學生核心能力培養研究
- 帶電粒子在復合場中的運動教學設計
- 通信光纜線路工程安全技術交底
- 2025年度福建省職業院校技能大賽口腔修復工藝賽項高職組考試題(附答案)
- 貴州省婦幼健康服務體系與能力提升實施方案
評論
0/150
提交評論