高三數學二輪復習專題13概率及其應用教案理蘇教版_第1頁
高三數學二輪復習專題13概率及其應用教案理蘇教版_第2頁
高三數學二輪復習專題13概率及其應用教案理蘇教版_第3頁
高三數學二輪復習專題13概率及其應用教案理蘇教版_第4頁
高三數學二輪復習專題13概率及其應用教案理蘇教版_第5頁
已閱讀5頁,還剩1頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

專題13概率及其應用(2)【高考趨勢】兩點分布、超幾何分布、二項分布等是概率中最重要的幾種分布,在實際應用和理論分析中都有重要的地位。高考對這部分概率知識的考查以運用概率的有關知識分析和解決實際問題主,考題的立意比較鮮明,綜合性較強,復習時應將事件關系的理解放在重要位置,只有理清事件的關系,才能使用相應的公式解題。本章含有分類討論的思想、數形結合的思想、轉化與化歸的思想,用到模型化方法,驗證法的數學方法,正難則反的思想。【考點展示】將一骰子連續拋擲三次,它落地時向上的點數之和等于5的概率為2、甲射擊命中目標的概率是,乙命中目標的概率是,丙命中目標的概率是,現在三人同時射擊目標,則目標被擊中的概率為3、口袋里放有大小相等的2個紅球和1個白球,有放回地每次摸取一個球,定義數列{an};如果Sn為數列{an}的前n項和,那么Sn=1的概率為4、接種某疫苗后,出現發熱反應的概率是0.80。現有5人接種該疫苗,至少有3人出現發熱反應的概率為。(精確到0.01)5、甲、乙兩個袋子中均裝有紅、白兩種顏色的小球,這些小球除顏色外完全相同,其中甲袋裝有4個紅球、2個白球,乙袋裝有1個紅球、5個白球。現分別從甲、乙兩袋中各隨機抽取1個球,則取出的兩球都是紅球的概率為(答案用分數表示)。【樣題剖析】例1一批玉米種子,共發芽率是0.8。(1)問每穴至少種幾粒種子,才能保證每穴至少有一粒發芽的概率大于98%?(2)若每穴種3粒,求恰好兩粒發芽的概率(lg2=0.3010)。例2實力相等的甲、乙兩隊參加乒乓球團體比賽,規定5局3勝制(即5局內誰先贏3局就算勝出并停止比賽)。(1)試分別求甲打完3局、4局、5局才能取勝的概率;(2)按比賽規則甲獲勝的概率。例3、在一段線路中并聯著3個自動控制的開關,只要其中有1個并能夠閉合,線路就能正常工作。假定在某段時間內每個開關能夠閉合的概率都是0.7,計算在這段時間內線路正常工作的概率。例4、袋子A和B中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是,從B中摸出一個紅球的概率為p。(1)從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止。①求恰好摸5次停止的概率;②記5次之內(含5次)摸到紅球的次數為X,求隨機變量X的分布率及數學期望E(X)。(2)若A,B兩個袋子中的球數之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率是,求p的值。【總結提煉】1、獨立重復試驗要從三方面考慮。第一:每次試驗是在同樣條件下進行。第二:各次試驗中的事件是相互獨立的。第三,每次試驗都只有兩種結果,即事件要么發生,要么不發生。2、如果1次試驗中某事件發生的概率是P,那么n次獨立重復試驗中這個事件恰好發生k次的概率為Pn(k)=。對于此式可以這么理解:由于1次試驗中事件A要么發生,要么不發生,所以在n次獨立重復試驗A恰好發生k次,則在另外的n-k次中A沒有發生。即發生,由P(A)=P,P()=1-P。所以上面的公式恰為[(1-P)+P]n展開式中的第k+1項,可見排列組合、二項式定理及概率間存在著密切的聯系。【自我測試】1、拋擲兩顆骰子,所得點數之和為X,那么X=4表示的隨機試驗結果是。2、下表為隨機變量X的分布列,則a=X123PA3、已知隨機變量X的分布列為P(X=k)=,k=1,2,…,則P(2X≤4)等于4、一袋中有2個白球,1個紅球,現從袋中往外取球,每次任取一個記下顏色后放回,直到紅球出現4次時停止,設停止時共取了X次球,則P(X=5)等于5、袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設得分為隨機變量X,則P(X≤6)=6、某批數量較大的商品的次品率為10%,從中任意地連續取出5件,其中次品數X的分布列為7、設隨機變量X~B(2,p),Y~B(4,p),若P(X≥1)=,則P(Y≥1)=8、某氣象站天氣預報的準確率為80%,計算(結果保留兩個有效數字):(1)5次預報中恰有4次準確的概率;(2)5次預報中至少有4次準確的概率。9、某陶瓷廠準備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經過兩次燒制。當第一次燒制合格后方可進入第二次燒制。兩次燒制過程相互獨立。根據該廠現有的技術水平,經過第一次燒制后,甲、乙、丙三件產品合格的概率依次為0.5、0.6、0.4,經過第二次燒制后,甲、乙、丙三件產品合格的概率依次為0.6、0.5、0.75。(1)求第一次燒制后恰有一件產品合格的概率;(2)經過前后兩次燒制后,合格工藝品的個數為X,求隨機變量X的期望。10、某城市出租汽車的起步價為10元,行駛路程不超過4km時租車費為10元,若行駛路程超出4km,則按每超出1km加收2元計費(超出不足1km的部分按1km計)。從這個城市的民航機場到某賓館的路程為15km。某司機經常駕車到機場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉換成行車路程(這個城市規定,每停車5分鐘按1km路程計費)。這個司機一次接送旅客的行車路程X是一個隨機變量。設他所收租

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論