河南省漯河高中2024年高三數學試題下學期六校聯考試題_第1頁
河南省漯河高中2024年高三數學試題下學期六校聯考試題_第2頁
河南省漯河高中2024年高三數學試題下學期六校聯考試題_第3頁
河南省漯河高中2024年高三數學試題下學期六校聯考試題_第4頁
河南省漯河高中2024年高三數學試題下學期六校聯考試題_第5頁
已閱讀5頁,還剩18頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省漯河高中2023年高三數學試題下學期六校聯考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.2.已知數列的前項和為,且,,,則的通項公式()A. B. C. D.3.已知復數,,則()A. B. C. D.4.已知函數,若對任意,都有成立,則實數的取值范圍是()A. B. C. D.5.甲、乙兩名學生的六次數學測驗成績(百分制)的莖葉圖如圖所示.①甲同學成績的中位數大于乙同學成績的中位數;②甲同學的平均分比乙同學的平均分高;③甲同學的平均分比乙同學的平均分低;④甲同學成績的方差小于乙同學成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④6.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.7.在區間上隨機取一個數,使得成立的概率為等差數列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.118.中國古代用算籌來進行記數,算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數時,像阿拉伯記數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.9.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區域為不平等區域,表示其面積,為的面積,將稱為基尼系數.對于下列說法:①越小,則國民分配越公平;②設勞倫茨曲線對應的函數為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④10.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應填入A. B.C. D.11.設全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}12.過點的直線與曲線交于兩點,若,則直線的斜率為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知函數f(x)=若關于x的方程f(x)=kx有兩個不同的實根,則實數k的取值范圍是________.14.如圖在三棱柱中,,,,點為線段上一動點,則的最小值為________.15.關于函數有下列四個命題:①函數在上是增函數;②函數的圖象關于中心對稱;③不存在斜率小于且與函數的圖象相切的直線;④函數的導函數不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)16.某校開展“我身邊的榜樣”評選活動,現對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票.這3名候選人的得票數(不考慮是否有效)分別為總票數的88%,75%,46%,則本次投票的有效率(有效票數與總票數的比值)最高可能為百分之________.“我身邊的榜樣”評選選票候選人符號注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個數不超過2時才為有效票.甲乙丙三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)電視傳媒公司為了解某地區觀眾對某體育節目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名,下面是根據調查結果繪制的觀眾日均收看該體育節目時間的頻率分布直方圖:將日均收看該體育節目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據已知條件完成下面的列聯表,并據此資料你是否認為“體育迷”與性別有關?非體育迷體育迷合計男女1055合計(2)將上述調查所得到的頻率視為概率.現在從該地區大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數為X.若每次抽取的結果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63518.(12分)為了實現中華民族偉大復興之夢,把我國建設成為富強民主文明和諧美麗的社會主義現代化強國,黨和國家為勞動者開拓了寬廣的創造性勞動的舞臺.借此“東風”,某大型現代化農場在種植某種大棚有機無公害的蔬菜時,為創造更大價值,提高畝產量,積極開展技術創新活動.該農場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產量的區別,該農場選取了40間大棚(每間一畝),分成兩組,每組20間進行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產量數據信息如下圖:(1)如果你是該農場的負責人,在只考慮畝產量的情況下,請根據圖中的數據信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設備的每年成本為0.2千元/畝.已知該農場共有大棚100間(每間1畝),農場種植的該蔬菜每年產出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據題中所給數據,用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農場根據以往該蔬菜的種植經驗,認為一間大棚畝產量超過5.25千斤為增產明顯.在進行夜間降溫試點的20間大棚中隨機抽取3間,記增產明顯的大棚間數為,求的分布列及期望.19.(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸建立極坐標系,射線的極坐標方程為,射線的極坐標方程為.(Ⅰ)寫出曲線的極坐標方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點,射線與曲線交于兩點,求面積的取值范圍.20.(12分)已知函數.(1)討論的單調性;(2)若,設,證明:,,使.21.(12分)如圖,已知拋物線:與圓:()相交于,,,四個點,(1)求的取值范圍;(2)設四邊形的面積為,當最大時,求直線與直線的交點的坐標.22.(10分)已知等腰梯形中(如圖1),,,為線段的中點,、為線段上的點,,現將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

由程序語言依次計算,直到時輸出即可【詳解】程序的運行過程為當n=2時,時,,此時輸出.故選:C【點睛】本題考查由程序框圖計算輸出結果,屬于基礎題2.C【解析】

利用證得數列為常數列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數列,所以,故.故選:C【點睛】本小題考查數列的通項與前項和的關系等基礎知識;考查運算求解能力,邏輯推理能力,應用意識.3.B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數問題是高考數學中的??紗栴},屬于得分題,主要考查的方面有:復數的分類、復數的幾何意義、復數的模、共軛復數以及復數的乘除運算,在運算時注意符號的正、負問題.4.D【解析】

先將所求問題轉化為對任意恒成立,即得圖象恒在函數圖象的上方,再利用數形結合即可解決.【詳解】由得,由題意函數得圖象恒在函數圖象的上方,作出函數的圖象如圖所示過原點作函數的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數形結合的思想,是一道中檔題.5.A【解析】

由莖葉圖中數據可求得中位數和平均數,即可判斷①②③,再根據數據集中程度判斷④.【詳解】由莖葉圖可得甲同學成績的中位數為,乙同學成績的中位數為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數據特征,考查由莖葉圖求中位數、平均數.6.B【解析】

由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B【點睛】本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題7.D【解析】

由題意,本題符合幾何概型,只要求出區間的長度以及使不等式成立的的范圍區間長度,利用幾何概型公式可得概率,即等差數列的公差,利用條件,求得,從而求得,解不等式求得結果.【詳解】由題意,本題符合幾何概型,區間長度為6,使得成立的的范圍為,區間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關幾何概型與等差數列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數列的通項公式,屬于基礎題目.8.B【解析】

根據題意表示出各位上的數字所對應的算籌即可得答案.【詳解】解:根據題意可得,各個數碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.【點睛】本題主要考查學生的合情推理與演繹推理,屬于基礎題.9.A【解析】

對于①,根據基尼系數公式,可得基尼系數越小,不平等區域的面積越小,國民分配越公平,所以①正確.對于②,根據勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.10.C【解析】

由于中正項與負項交替出現,根據可排除選項A、B;執行第一次循環:,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執行第二次循環:由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執行第三次循環:由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應填入,故選C.11.C【解析】

解一元二次不等式求得集合,由此求得【詳解】由,解得或.因為或,所以.故選:C【點睛】本小題主要考查一元二次不等式的解法,考查集合補集的概念和運算,屬于基礎題.12.A【解析】

利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結合,求得直線的傾斜角為,進而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設與曲線相切于點,則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點睛】本小題主要考查直線和圓的位置關系,考查數形結合的數學思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】由圖可知,當直線y=kx在直線OA與x軸(不含它們)之間時,y=kx與y=f(x)的圖像有兩個不同交點,即方程有兩個不相同的實根.14.【解析】

把繞著進行旋轉,當四點共面時,運用勾股定理即可求得的最小值.【詳解】將以為軸旋轉至與面在一個平面,展開圖如圖所示,若,,三點共線時最小為,為直角三角形,故答案為:【點睛】本題考查了空間幾何體的翻折,平面內兩點之間線段最短,解直角三角形進行求解,考查了空間想象能力和計算能力,屬于中檔題.15.①②③【解析】

由單調性、對稱性概念、導數的幾何意義、導數與極值的關系進行判斷.【詳解】函數的定義域是,由于,在上遞增,∴函數在上是遞增,①正確;,∴函數的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數的單調性、對稱性,考查導數的幾何意義、導數與極值,解題時按照相關概念判斷即可,屬于中檔題.16.91【解析】

設共有選票張,且票對應張數為,由此可構造不等式組化簡得到,由投票有效率越高越小,可知,由此計算可得投票有效率.【詳解】不妨設共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數與總票數的比值)最高可能為.故答案為:.【點睛】本題考查線性規劃的實際應用問題,關鍵是能夠根據已知條件構造出變量所滿足的關系式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)無關;(2),.【解析】

(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯表如下:非體育迷體育迷合計男301545女451055合計7525100將22列聯表中的數據代入公式計算,得.因為3.030<3.841,所以我們沒有充分理由認為“體育迷”與性別有關.(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=18.(1)見解析;(2)(i)該農場若采用延長光照時間的方法,預計每年的利潤為426千元;(ii)若采用降低夜間溫度的方法,預計每年的利潤為424千元;(3)分布列見解析,.【解析】

(1)估計第一組數據平均數和第二組數據平均數來選擇.(2)對于兩種方法,先計算出每畝平均產量,再算農場一年的利潤.(3)估計頻率分布直方圖可知,增產明顯的大棚間數為5間,由題意可知,的可能取值有0,1,2,3,再算出相應的概率,寫出分布列,再求期望.【詳解】(1)第一組數據平均數為千斤/畝,第二組數據平均數為千斤/畝,可知第一組方法較好,所以采用延長光照時間的方法;((2)(i)對于采用延長光照時間的方法:每畝平均產量為千斤.∴該農場一年的利潤為千元.(ii)對于采用降低夜間溫度的方法:每畝平均產量為千斤,∴該農場一年的利潤為千元.因此,該農場若采用延長光照時間的方法,預計每年的利潤為426千元;若采用降低夜間溫度的方法,預計每年的利潤為424千元.(3)由圖可知,增產明顯的大棚間數為5間,由題意可知,的可能取值有0,1,2,3,;;;.所以的分布列為0123所以.【點睛】本題主要考查樣本估計總體和離散型隨機變量的分布列,還考查了數據處理和運算求解的能力,屬于中檔題.19.(Ⅰ),曲線是以為圓心,為半徑的圓;(Ⅱ).【解析】

(Ⅰ)由曲線的參數方程能求出曲線的普通方程,由此能求出曲線的極坐標方程.(Ⅱ)令,,則,利用誘導公式及二倍角公式化簡,再由余弦函數的性質求出面積的取值范圍;【詳解】解:(Ⅰ)由(為參數)化為普通方程為,整理得曲線是以為圓心,為半徑的圓.(Ⅱ)令,,,,面積的取值范圍為【點睛】本題考查曲線的極坐標方程的求法,考查三角形的面積的求法,考查參數方程、直角坐標方程、極坐標方程的互化等基礎知識,考查運算求解能力,屬于中檔題.20.(1)見解析;(2)證明見解析.【解析】

(1),分,,,四種情況討論即可;(2)問題轉化為,利用導數找到與即可證明.【詳解】(1).①當時,恒成立,當時,;當時,,所以,在上是減函數,在上是增函數.②當時,,.當時,;當時,;當時,,所以,在上是減函數,在上是增函數,在上是減函數.③當時,,則在上是減函數.④當時,,當時,;當時,;當時,,所以,在上是減函數,在上是增函數,在上是減函數.(2)由題意,得.由(1)知,當,時,,.令,,故在上是減函數,有,所以,從而.,,則,令,顯然在上是增函數,且,,所以存在使,且在上是減函數,在上是增函數,,所以,所以,命題成立.【點睛】本題考查利用導數研究函數的單調性以及證明不等式的問題,考查學生邏輯推理能力,是一道較難的題.21.(1)(2)點的坐標為【解析】

將拋物線方程與圓方程聯立,消去得到關于的一元二次方程,拋物線與圓有四個交點需滿足關于的一元二次方程在上有兩個不等的實數根,根據二次函數的有關性質即可得到關于的不等式組,解不等式即可.不妨設拋物線與圓的四個交點坐標為,,,,據此可表示出直線、的方程,聯立方程即可表示出點坐標,再根據等腰梯形的面積公式可得四邊形的面積的表達式,令,由及知,對關于的面積函數進行求導,判斷其單調性和最值,即可求出四邊形的面積取得最大值時的值,進而求出點坐標.【詳解】(1)聯立拋物線與圓的方程消去,得.由題意可知在上有兩個不等的實數根.所以解得,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論