




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
金融大數(shù)據(jù)創(chuàng)業(yè)案例燒了五千萬美元的教訓(xùn)12ParallelUniverseGFW3Aboutme4BankingGoogleCheckoutAdwordsGoogleMapStartup(today’sstory)SocialmediaadvertisingStartupAdvisor5TheIdea6ABetterGroupon7What’sWrongwithGroupon?What’sWrongwithGroupon?PlatformSellersBuyersTheIdeaHelpretailers/merchantstosendhighlytargetedandrelevantpromotionalofferstoconsumerswhohavehighinterestsintheirproduct“Take$10offanypurchaseatXYZstore,offerexpiresin10days”Whereisthedata?Whereisdata?MerchantsthemselvesOnlinetrafficlogsPOSmachineBanks…Howdowegetthedata?Howdowegetthedata?Banksdon’thavetechnology&expertisetodoitrightPartnershipwithbanksWin-winproposalwithpartnersBothonlineandoff-lineWegotdata!Wegotdata!6outoftop8majorbanksCreditcard/debitcardAnonymizedtransactionleveldata2+yearsofhistoricaldata+dailyrefreshesNowwhat?Bigdata!
Machinelearning!
Bigdata!
Machinelearning!
Butbeforethat…
DataProcessingGeodata:locationofstores,locationofcustomersMatchtransactiontolocation/storeCategoryofstoresNatureofthetransaction(online,phone,mobile,etc.)BankregulationsAggregationlevelDataProcessingConsumerTransactionDataRetailerDataHDFSPostgresqlaggregationPredictiveModelingConsumerbehaviorpredictionRetailer1Retailer2Retailer3…RetailerNConsumer1???Consumer2??Consumer3???Consumer4??…ConsumerM??“Wheredoyourcustomersalsospendmoneyat?”AgreattoolforSales/MarketingIdentifypotentialclientsCompetitoranalysisStrong/weakstores/areasCross-categorypromotionsPredictiveModelingInputvariables:location,userspend,shoppingfrequency,categorypreference,timing,etc.Output:purchaseprobability,purchaseamountUser1User2UserM…Retail1Retail2RetailN…User1User2UserM…Retail1Retail2RetailN…Forevery(user,retailer)pair,everyweekPredictingprobabilityofapurchaseCouponvsOrganicOnlinevsofflineNewcustomervsexistingcustomerNewcustomerincategoryvsexistingcustomerincategoryShoppingfrequencydifferencebetweencategoriesBirthdays,annualeventsMatchrate:redemptionreallyhappened?PredictingspendamountRankingofhistoricalspendExistingcustomersIn-categorycustomersHowtodefinecategories?OptimizationProfitableoffers:Applyfilteratretailerlevel,dependingoncoupontypeWhatwecareabout:TotalRevenuesum((expectedspend–discount)*profitmargin*expectedresponserate)Sumoverallusers,maximumoneretailerperuserResponsevolumesum(expectedresponserate)Retailerlevel,maximumoneretailerperuserOtherfactorsOptimizationBalancebetweenmultipleobjectivesandconstraintsTextbookoptimizationproblemLargescalelinear/quadraticprogrammingmodelTheFinalProduct:ConsumerexperienceRegularlyusingcreditcardReceivedamessageaboutastore-specificcoupon:EmailWebMobileGeo-fencingNeedtouseinoneortwoweeksTransactionhappenasusualDiscountappliedoncreditcardstatementTheFinalProduct:MerchantExperienceRunaspecificpromotionprogramNotraininginvolvedEngagedcustomerscomeforpurchasesTheFinalProduct:BankExperienceDatasharingReceivedataandsendoffersouttoconsumersReceiveshareofrevenueFastForward3years…BanksMerchantsConsumersWe’rehereInvestorsWhereweareSiliconValleybased50+employeesfromGoogle,Visa,Yahooetc.3roundsof$50M+VCfundraised100+clients,10M+usersAccuratepredictiononconsumerbehaviororotherwiseHighlytargetedpromotionaloffersfromrelevantretailersWhatcouldgowrong?MeetwithReality–technologyBalancebetweenmultipleobjectivesandconstraintsMaximizetotalrevenuewhilekeepingresponserate>=x%Maximizeoverallresponseratewhilekeepingtotalrevenue>=$XMaximizetotalredemptionvolumewhilekeepingrevenue>=$XHowtobalance?N-1Constraints,1objectivefunctionLinearcombinationofobjectivesMeetwithReality–technologyCustomizedcomplexmodelsTakeshourstofinishInfeasiblestatesolutionaddapre-optimizationprocesstoevaluate(rough)feasibilitywithoutactuallygettingasolutionMeetwithReality–technologyRealdataisdifferentfromlabsimulationExample:RedemptionratealothigherthanorganicbehaviorSpendamountoncouponredemptionisverydifferenttooModelneedtohaveroomforsuchadjustmentsOverall,wehaveahighperformingproductwithhighaccuracypredictionandoptimizednetworkyieldMeetwithReality–BusinessModelCooperativePartnersareextremelyimportantBanks,merchants,investors,andconsumersAllcomponentsHASTOWORK!Significantchallengesduringproductdevelopment,launchandbusinessdevelopmentMeetwithReality–BanksRegulationsSpeedinproductdevelopmentDatasharing/pipeline,frequencyLevelofdatadetails,itemspurchasedCommunicationstoconsumersExclusiverelationshipMeetwithReality–MerchantsRegulations:tobacco,medicine,etc.ProductspecificpromotionsDouble-dippingAdoptionofnewtechnolog
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購人員廉潔誠信責(zé)任協(xié)議
- 教育培訓(xùn)機(jī)構(gòu)出資成立協(xié)議書
- 商業(yè)地產(chǎn)場地承包經(jīng)營合作協(xié)議規(guī)范
- 地腳螺栓測量定位流程
- 成都市二手房買賣合同租賃權(quán)優(yōu)先購買權(quán)協(xié)議
- 豐富聯(lián)盟活動策劃方案
- 醫(yī)保中心印章管理制度
- 農(nóng)村打工住宿管理制度
- 商會信息披露管理制度
- 醫(yī)用耗材設(shè)備管理制度
- 2025《學(xué)前教育法》宣傳月培訓(xùn)含講稿
- TCCEAS001-2022建設(shè)項目工程總承包計價規(guī)范
- 2025年體彩應(yīng)聘考試試題及答案
- 2024年醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范培訓(xùn)課件
- 小學(xué)數(shù)學(xué)命題研究
- summer-vibe-的中英歌詞
- 天津友發(fā)鋼管集團(tuán)有限公司鋼管
- 水工建筑物水閘課程設(shè)計
- 七年級英語知識競賽
- 《生產(chǎn)計劃與控制》課程設(shè)計.doc
- 外文翻譯--注射成型機(jī)液壓系統(tǒng)
評論
0/150
提交評論