




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版數學六年級下冊《圓錐的體積》教學設計
設計思想:
這節課內容是在學生學習了圓柱的體積的基礎上教學的。主要是掌握圓錐體
積計算公式的推導,并學會運用公式正確地進行計算及解決有關實際問題。
復習導入時,利用生活實例激發學生學習動機,調動學生探究欲望。在探究
過程中注意培養學生邏輯思維能力,引導學生逐步從猜測——試驗——推導一
一應用這幾個環節來進行,符合學生的認知規律,便于學生生動地獲取知識,掌
握正確的學習方法。
在學習新知時,發揮學生的主體意識,兩道例題都是讓學生獨立解答。充分
相信學生,讓學生來當小老師,講清算理。這樣使學生構建知識的過程更加完整
和深刻。教學由〃教學生學習"變成〃教會學生自己學習〃。
教學目標:
知識與能力:使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐
的體積。
方法與途徑:引導學生學會觀察、猜測和操作的能力,培養學生掌握正確的
學習方法。
情感與評價:培養學生靈活運用知識解決實際問題的能力及熱愛數學、合作
探究的意識。
教學重點:
使學生理解和掌握求圓錐體積的計算公式并能正確求出圓錐的體積。
教學難點:
理解圓錐體積計算公式的推導過程。
教學準備:
多媒體課件;每組學生準備一個空圓錐;一個和它等底等高的空圓柱,若干
沙土。
教學過程:
一、激趣導入
1.大家喜歡吃冰激凌嗎?(課件出示:用一個空圓錐筒裝滿的冰激凌)你知
道筒中大約裝了多少冰激凌?(要知道圓錐的體積)
2.依據學生回答揭示課題。
二、學法指導
怎樣求圓錐的體積呢?(課件出示問題)給你一個底面直徑10厘米,高30
厘米的圓柱形木頭(如圖)讓你做一個底面直徑10厘米,高30厘米的圓錐,
你準備怎么做?
1.學生自由討論
小結:
(1)找出圓柱一個底面的中心
(2)沿著這個中心點和圓柱另一底面削去邊緣部分(課件演示)
2.通過剛才的探討,猜猜看圓錐的體積與什么圖形的體積聯系最密切?(圓
柱的體積)
3.驗證:
根據已知圓柱的體積估計對應的圓錐體積(課件出示)
(1)學生估計
(2)觀察并思考:對應的圓柱和圓錐有什么重要特點?
學生討論。(等底等高)
三、探究新知
1.通過剛才的思考與討論我們發現選取等底等高的圓柱和圓錐來研究,有利
于我們對猜想的驗證。
2.探究過程:
(1)實驗材料:一個圓錐、一個和它等底等高的圓柱,若干沙土。(每個
小組)
(2)實驗過程:
小組一:把空圓錐裝滿沙土,倒入空圓柱中,統計次數。
小組二、把空圓臊滿沙土,倒入空圓錐中?統計次數。
(3)注意事項:
裝沙土時圓柱和圓錐的底面要刮平,并且不能用手壓。
3.歸納實驗結果:
(1)小組匯報實驗結果。
(2)課件演示直觀動態圖。
?按照下面的方法做一做,你有什么發現?
準備等底等高的
圓柱形容器和圓
錐形容器各一個
圓柱的體積等于和它等底等高的圓錐的體積的3倍。
I;,V=-Sh
忠于3
小心4M—3―.
師生共同小結:圓錐的體積是與它等底等高的圓柱體積的三分之一,或圓柱
的體積是與它等底等高的圓錐體積的三倍。
V=-sh
3
(3)回到導課題目(課件出示)已知一個利同錐筒等底等高的圓柱的體積,
估算出圓錐筒里大約裝了多少冰激凌。
四、能力演練
1.(課件出示)例1:一個圓錐形的零件,底面積是19平方厘米,高是12
座米,這個零件的體積是多少?
(1)學生獨立解答,指名板演。
1/3x19x12=76(立方厘米)
答:這個零件的體積是76立方厘米。
(2)讓板演學生注一講算理.
(3)思考:如果底面積沒有直接告訴我們,怎么辦?
學生討論交流。
2.(課件出示)例2:在打谷場上,有一個近似于圓錐形的小麥堆,測得底
面直徑是4米,高是1.2米,每立方米小麥約重735千克,這對小麥大約有多少
千克?(得數保留整千克)
指名板演,其余學生獨立完成。
請板演的學生講一講算理。
3.變式練習:我是小法官。
(1)圓柱體的體積一定比圓錐體的體積大。()
(2)圓錐的體積等于和它等底等高的圓柱體的1/3。()
(3)正方體、長方體、圓錐體的體積都等于底面積x高。()
(4)等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的
體積是9立方米。()
五、課外延伸
一個圓柱形橡皮泥,底面積是12平方厘米,高是5厘米。
(1)如果把它捏成同樣底面大小的圓錐,這個圓錐的高是多少厘米?
(2)如果把它捏成同樣高的圓錐,這個圓錐的底面積是多少?
板書設計
圓錐的體積計算
V=-sh
3
例1例2
1】
-X19X12|x13.14X(4+2)xi.2
3
11
=-X12X19=-X1.2X12.56
33
=76(立方厘米)=5.024(立方米)
苦:這個零件的體積是76立方厘735X5.024^3693(千克)
米答:這堆小麥大約有3693千克。
教學反思:
一、教學時注重數學思維的過程性
圓錐的體積與什么有關?教材只是“直接呈現推導過程〃的方式給出了計算公
式。在教學時我感到有這么幾個困惑:
(1)怎么從最初就能直接想到圓錐的體積與圓柱的體積有關?
(2)怎么就能在實驗中凸現“等底等高〃這一前提的重要性?
經過嘗試我設置了以下幾點內容:
(1)呈現問題情境:用圓柱做圓錐。
(2)聯想猜測建立聯系。根據對應的圓柱體積估計圓錐的體
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年推進生態文明建設美麗中國黨課
- 九年級物理上冊83電話和傳感器省公開課一等獎新課獲獎課件
- Unit3KeepFitSectionB1a-1d課件人教版級英語下冊
- 2023年上門服務市場分析
- 太赫茲通信技術創新創業項目商業計劃書
- 類風濕關節炎飲食護理
- 焊工考試試題及答案2
- 智慧旅游發展模式-洞察及研究
- 山東省濟南市禮樂初級中學2024-2025學年數學九上期末聯考試題含解析
- 吉林省吉林市名校2024年數學八上期末經典試題含解析
- 新《醫用X射線診斷與介入放射學》考試復習題庫(含答案)
- 校長教職工大會講話材料
- 云倉課件教學課件
- 中共黨史知識競賽試題及答案
- NBT 42033-2014 小水電站群集中控制系統基本技術條件
- 2024版《供電營業規則》學習考試題庫500題(含答案)
- 物業電梯困人應急處理
- 廣東省初級中學學生學籍表
- 學術期刊推廣方案
- 2023年保定市蠡縣教師招聘考試真題
- T-SZHW 001-2024 深圳市城市管家服務管理規范(試行)
評論
0/150
提交評論