第05講-函數的圖象(教師版)_第1頁
第05講-函數的圖象(教師版)_第2頁
第05講-函數的圖象(教師版)_第3頁
第05講-函數的圖象(教師版)_第4頁
第05講-函數的圖象(教師版)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第05講函數的圖象(核心考點精講精練)命題規律及備考策略【命題規律】本節內容是新高考卷的命題載體內容,通常會結合其他知識點考查,需要掌握函數的基本性質,難度中等偏下,分值為5分【備考策略】1.掌握基本初等函數的圖象特征,能熟練運用基本初等函數的圖象解決問題2.能熟練運用函數的基本性質判斷對應函數圖象3.能運用函數的圖象理解和研究函數的性質【命題預測】本節內容通??疾榻o定函數解析式來判斷所對應的圖象,是新高考復習的重要內容知識講解圖象問題解題思路(判斷奇偶性、特值、極限思想)①②③④特別地:當時例如:,當時函數的圖象將自變量的一個值x0作為橫坐標,相應的函數值f(x0)作為縱坐標,就得到了坐標平面上的一個點的坐標,當的點,所有這些點組成的集合(點集)用符號表述為{(x,y)|y=f(x),x∈A},所有這些點組成的圖形就是函數的圖象.描點法作圖方法步驟:(1)確定函數的定義域;(2)化簡函數的解析式;(3)討論函數的性質即奇偶性、周期性、單調性、最值(甚至變化趨勢);(4)描點連線,畫出函數的圖象.4.圖象變換(1)平移變換(2)對稱變換①y=f(x)eq\o(→,\s\up7(關于x軸對稱))y=-f(x);②y=f(x)eq\o(→,\s\up7(關于y軸對稱))y=f(-x);③y=f(x)eq\o(→,\s\up7(關于原點對稱))y=-f(-x);④y=ax(a>0且a≠1)eq\o(→,\s\up7(關于y=x對稱))y=logax(a>0且a≠1).(3)伸縮變換①把函數圖象的縱坐標不變,橫坐標伸長到原來的倍得(0<<1)②把函數圖象的縱坐標不變,橫坐標縮短到原來的倍得(>1)③把函數圖象的橫坐標不變,縱坐標伸長到原來的倍得(>1)④把函數圖象的橫坐標不變,縱坐標縮短到原來的倍得(0<<1)(4)翻折變換①y=f(x)eq\o(→,\s\up11(保留x軸上方圖象),\s\do4(將x軸下方圖象翻折上去))y=|f(x)|.②y=f(x)eq\o(→,\s\up11(保留y軸右邊圖象,并作其),\s\do4(關于y軸對稱的圖象))y=f(|x|).考點一、判斷函數圖象1.(2022·全國·統考高考真題)函數在區間的圖象大致為(

)A. B.C. D.2.(2022·天津·統考高考真題)函數的圖像為(

)A. B.C. D.3.(2021·天津·統考高考真題)函數的圖像大致為(

)A. B.C. D.1.(2023·吉林通化·梅河口市第五中學??寄M預測)函數的圖像大致為(

)A. B.C. D.2.(2023·江蘇無錫·江蘇省天一中學校考模擬預測)函數的部分圖象為(

)A.

B.

C.

D.

3.(2023·山東泰安·統考模擬預測)函數的圖象可能是(

)A. B.C. D.4.(2023·山東德州·三模)函數的圖象大致是(

)A.

B.

C.

D.

5.(2023·河北·統考模擬預測)將函數的圖像向左平移個單位長度,得到函數的圖像,則的部分圖像大致為(

)A. B.C. D.6.(2023·江蘇鎮江·揚中市第二高級中學校考模擬預測)函數的圖像大致為(

)A.

B.

C.

D.

考點二、判斷函數解析式1.(2022·全國·統考高考真題)如圖是下列四個函數中的某個函數在區間的大致圖像,則該函數是(

)A. B. C. D.2.(2021·浙江·統考高考真題)已知函數,則圖象為如圖的函數可能是(

)A. B.C. D.3.(2023·天津·統考高考真題)函數的圖象如下圖所示,則的解析式可能為(

A. B.C. D.1.(2023·浙江溫州·統考二模)某個函數的大致圖象如圖所示,則該函數可能是(

)A. B.C. D.2.(2023·廣東佛山·??寄M預測)已知的圖象如圖,則的解析式可能是(

)A. B.C. D.3.(2023·湖北武漢·華中師大一附中校考模擬預測)已知函數的部分圖像如圖所示,則的解析式可能為(

A. B.C. D.4.(2021·浙江·統考高考真題)已知函數,則圖象為如圖的函數可能是(

)A. B.C. D.5.(2023·天津·統考高考真題)函數的圖象如下圖所示,則的解析式可能為(

A. B.C. D.6.(2023·河北·統考模擬預測)已知函數的部分圖象如圖所示,則的解析式可能為(

)A. B.C. D.7.(2023·海南??凇ずD先A僑中學校考模擬預測)下列四個函數中的某個函數在區間上的大致圖象如圖所示,則該函數是(

A. B. C. D.8.(2022·全國·統考高考真題)如圖是下列四個函數中的某個函數在區間的大致圖像,則該函數是(

)A. B. C. D.【基礎過關】一、單選題1.(2023·重慶萬州·統考模擬預測)函數的大致圖象是(

)A. B.C. D.2.(2023·安徽安慶·安徽省桐城中學校考一模)函數的大致圖象是(

)A. B.C. D.3.(2023·安徽蚌埠·統考三模)函數的圖象大致為(

)A. B.C. D.4.(2023·河北秦皇島·秦皇島一中??级#┖瘮档拇笾聢D象為(

)A. B.C. D.5.(2023·重慶·統考模擬預測)函數的部分圖象是(

)A. B.C. D.6.(2023·廣東汕頭·統考二模)已知函數,則的大致圖象為(

)A. B.C. D.7.(2023·云南·校聯考二模)函數的圖象大致形如(

)A. B. C. D.8.(2023·海南·校聯考模擬預測)函數的部分圖象大致是(

)A. B. C. D.9.(2023·遼寧沈陽·統考一模)如圖是函數圖像的一部分,設函數,,則可以表示為(

)A. B.C. D.10.(2023·湖南長沙·長郡中學??家荒#┖瘮翟谏系拇笾聢D像為(

)A. B.C. D.【能力提升】一、單選題1.(2023·吉林·吉林省實驗??寄M預測)函數的圖象大致為(

)A. B.C. D.2.(2023·江蘇無錫·輔仁高中??寄M預測)函數的圖像大致為(

)A. B.C. D.3.(2023·黑龍江哈爾濱·哈九中校考模擬預測)函數的部分圖像大致為(

)A. B.C. D.4.(2023·廣東廣州·廣州六中??既#┖瘮档膱D象如圖所示,則(

)A.,, B.,,C.,, D.,,5.(2023·全國·模擬預測)函數的大致圖像為(

)A.

B.

C.

D.

6.(2023·河北·統考模擬預測)函數的大致圖象是(

)A.

B.

C.

D.

7.(2023·安徽六安·六安一中校考模擬預測)曲線是造型中的精靈,以曲線為元素的LOGO給人簡約而不簡單的審美感受,某數學興趣小組設計了如圖所示的雙J型曲線LOGO,以下4個函數中最能擬合該曲線的是(

A. B.C. D.8.(2023·安徽蕪湖·統考模擬預測)函數在區間的圖像大致為(

)A. B.C. D.9.(2023·湖北恩施·??寄M預測)數學與音樂有著緊密的關聯.聲音中也包含正弦函數,聲音是由于物體的振動產生的能引起聽覺的波,每一個音都是由純音合成的.純音的數學模型是函數,我們平時聽到的音樂一般不是純音,而是有多種波疊加而成的復合音.已知刻畫某復合音的函數為,則其部分圖象大致為(

)A.

B.

C.

D.

二、多選題10.(2023·福建泉州·統考模擬預測)函數的圖象可以是(

)A. B.C. D.【真題感知】一、單選題1.(浙江·高考真題)函數y=sin2x的圖象可能是A. B.C. D.2.(2020·浙江·統考高考真題)函數y=xcosx+sin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論