河北省保定市博野中學2025屆高考數學五模試卷含解析_第1頁
河北省保定市博野中學2025屆高考數學五模試卷含解析_第2頁
河北省保定市博野中學2025屆高考數學五模試卷含解析_第3頁
河北省保定市博野中學2025屆高考數學五模試卷含解析_第4頁
河北省保定市博野中學2025屆高考數學五模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省保定市博野中學2025屆高考數學五模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.32.已知三棱錐中,為的中點,平面,,,則有下列四個結論:①若為的外心,則;②若為等邊三角形,則;③當時,與平面所成的角的范圍為;④當時,為平面內一動點,若OM∥平面,則在內軌跡的長度為1.其中正確的個數是().A.1 B.1 C.3 D.43.已知集合,,若,則()A.4 B.-4 C.8 D.-84.如圖,圓是邊長為的等邊三角形的內切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.5.已知函數的導函數為,記,,…,N.若,則()A. B. C. D.6.設函數(,為自然對數的底數),定義在上的函數滿足,且當時,.若存在,且為函數的一個零點,則實數的取值范圍為()A. B. C. D.7.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-288.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.9.已知函數,若函數的極大值點從小到大依次記為,并記相應的極大值為,則的值為()A. B. C. D.10.已知實數滿足則的最大值為()A.2 B. C.1 D.011.點在曲線上,過作軸垂線,設與曲線交于點,,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數為()A.0 B.1 C.2 D.312.某三棱錐的三視圖如圖所示,網格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在△ABC中,AB=4,D是AB的中點,E在邊AC上,AE=2EC,CD與BE交于點O,若OB=OC,則△ABC面積的最大值為_______.14.在長方體中,,,,為的中點,則點到平面的距離是______.15.已知數列為等差數列,數列為等比數列,滿足,其中,,則的值為_______________.16.在回歸分析的問題中,我們可以通過對數變換把非線性回歸方程,()轉化為線性回歸方程,即兩邊取對數,令,得到.受其啟發,可求得函數()的值域是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足,且,,成等比數列.(1)求證:數列是等差數列,并求數列的通項公式;(2)記數列的前n項和為,,求數列的前n項和.18.(12分)已知在中,內角所對的邊分別為,若,,且.(1)求的值;(2)求的面積.19.(12分)已知函數.(1)若是的極值點,求的極大值;(2)求實數的范圍,使得恒成立.20.(12分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區,如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設,用關于的函數表示,并求在區間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.21.(12分)設等差數列的首項為0,公差為a,;等差數列的首項為0,公差為b,.由數列和構造數表M,與數表;記數表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數表中位于第i行第j列的元素為,其中(,,).如:,.(1)設,,請計算,,;(2)設,,試求,的表達式(用i,j表示),并證明:對于整數t,若t不屬于數表M,則t屬于數表;(3)設,,對于整數t,t不屬于數表M,求t的最大值.22.(10分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.2、C【解析】

由線面垂直的性質,結合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質可判斷②錯誤;由線面角的定義和轉化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設與平面所成角為可得,設到平面的距離為由可得即有,當且僅當取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點睛】此題考查立體幾何中與點、線、面位置關系有關的命題的真假判斷,處理這類問題,可以用已知的定理或性質來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.3、B【解析】

根據交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎題.4、C【解析】

建立坐標系,寫出相應的點坐標,得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標系,設內切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據三角形面積公式得到,可得到內切圓的半徑為可得到點的坐標為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標化的應用,以及參數方程的應用,以向量為載體求相關變量的取值范圍,是向量與函數、不等式、三角函數等相結合的一類綜合問題.通過向量的運算,將問題轉化為解不等式或求函數值域,是解決這類問題的一般方法.5、D【解析】

通過計算,可得,最后計算可得結果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導數的計算以及不完全歸納法的應用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.6、D【解析】

先構造函數,由題意判斷出函數的奇偶性,再對函數求導,判斷其單調性,進而可求出結果.【詳解】構造函數,因為,所以,所以為奇函數,當時,,所以在上單調遞減,所以在R上單調遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數的一個零點,所以在時有一個零點因為當時,,所以函數在時單調遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【點睛】本題主要考查函數與方程的綜合問題,難度較大.7、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.8、D【解析】

求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設,則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯立方程組,合理利用根與系數的關系和中點坐標公式是解答的關鍵,著重考查了推理與運算能力.9、C【解析】

對此分段函數的第一部分進行求導分析可知,當時有極大值,而后一部分是前一部分的定義域的循環,而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應極大值,分組求和即得【詳解】當時,,顯然當時有,,∴經單調性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數不能在端點處取得極值∴,,∴對應極值,,∴故選:C【點睛】本題考查基本函數極值的求解,從函數表達式中抽離出相應的等差數列和等比數列,最后分組求和,要求學生對數列和函數的熟悉程度高,為中檔題10、B【解析】

作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經過點時,其截距最大,此時最大得,當時,故選:B【點睛】考查線性規劃,是基礎題.11、C【解析】

設,則,則,即可得,設,利用導函數判斷的零點的個數,即為所求.【詳解】設,則,所以,依題意可得,設,則,當時,,則單調遞減;當時,,則單調遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數為2.故選:C【點睛】本題考查利用導函數處理零點問題,考查向量的坐標運算,考查零點存在性定理的應用.12、C【解析】

作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點睛】本題考查三棱錐外接球的表面積,解題時要結合三視圖作出三棱錐的實物圖,并分析三棱錐的結構,選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據點共線得到,從而得到O的軌跡為阿氏圓,結合三角形和三角形的面積關系可求.【詳解】設B,O,E共線,則,解得,從而O為CD中點,故.在△BOD中,BD=2,,易知O的軌跡為阿氏圓,其半徑,故.故答案為:.【點睛】本題主要考查三角形的面積問題,把所求面積進行轉化是求解的關鍵,側重考查數學運算的核心素養.14、【解析】

利用等體積法求解點到平面的距離【詳解】由題在長方體中,,,所以,所以,設點到平面的距離為,解得故答案為:【點睛】此題考查求點到平面的距離,通過在三棱錐中利用等體積法求解,關鍵在于合理變換三棱錐的頂點.15、【解析】

根據題意,判斷出,根據等比數列的性質可得,再令數列中的,,,根據等差數列的性質,列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數列中的,,,根據等差數列的性質,可得,所以.②根據①②得出,.所以.故答案為.【點睛】本題主要考查等差數列、等比數列的性質,屬于基礎題.16、【解析】

轉化()為,即得解.【詳解】由題意:().故答案為:【點睛】本題考查類比法求函數的值域,考查了學生邏輯推理,轉化劃歸,數學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)因為,所以,所以,所以數列是等差數列,設數列的公差為,由可得,因為成等比數列,所以,所以,所以,因為,所以,解得(舍去)或,所以,所以.(2)由(1)知,,所以,所以.18、(1);(2)【解析】

(1)將代入等式,結合正弦定理將邊化為角,再將及代入,即可求得的值;(2)根據(1)中的值可求得和,進而可得,由三角形面積公式即可求解.【詳解】(1)由,得,由正弦定理將邊化為角可得,∵,∴,∴,化簡可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【點睛】本題考查了正弦定理在邊角轉化中的應用,正弦差角公式的應用,三角形面積公式求法,屬于基礎題.19、(1).(2)【解析】

(1)先對函數求導,結合極值存在的條件可求t,然后結合導數可研究函數的單調性,進而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,構造函數g(x)=x2+(t﹣2)x﹣tlnx,結合導數及函數的性質可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當x>2,0<x<1時,f′(x)>0,函數單調遞增,當1<x<2時,f′(x)<0,函數單調遞減,故當x=1時,函數取得極大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0時恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,則,(i)當t≥0時,g(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)當﹣2<t<0時,g(x)在()上單調遞減,在(0,),(1,+∞)上單調遞增,此時g(1)=t﹣1<﹣1不合題意,舍去;(iii)當t=﹣2時,g′(x)0,即g(x)在(0,+∞)上單調遞增,此時g(1)=﹣3不合題意;(iv)當t<﹣2時,g(x)在(1,)上單調遞減,在(0,1),()上單調遞增,此時g(1)=t﹣1<﹣3不合題意,綜上,t≥1時,f(x)≥2恒成立.【點睛】本題主要考查了利用導數求解函數的單調性及極值,利用導數與函數的性質處理不等式的恒成立問題,分類討論思想,屬于中檔題.20、(1),最大值公頃;(2)17、25、5、5.【解析】

(1)由余弦定理求出三角形ABC的邊長BC,進而可以求出,,由面積公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表達式求出,。【詳解】(1)由余弦定理得,,所以,,同理可得又,所以,故在區間上的最大值為,近似值為。(2)由(1)知,,,所以,進而,由知,,,故、、、的值分別是17、25、5、5。【點睛】本題主要考查利用余弦定理解三角形以及同角三角函數平方關系的應用,意在考查學生的數學建模以及數學運算能力。21、(1)(2)詳見解析(3)29【解析】

(1)將,代入,可求出,,可代入求,,可求結果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數列的通項公式為:;等差數列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數列的通項公式為:;等差數列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數,考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數.反證法:假設集合中任何一個元素,都不是7的倍數,則集合中每一元素關于7的余數可以為1,2,3,4,5,6,又因為集合中共有7個元素,所以集合中至少存在兩個元素關于7的余數相同,不妨設為,,其中,,.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論