雅安職業(yè)技術(shù)學(xué)院《字體設(shè)計(jì)與軟件應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
雅安職業(yè)技術(shù)學(xué)院《字體設(shè)計(jì)與軟件應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
雅安職業(yè)技術(shù)學(xué)院《字體設(shè)計(jì)與軟件應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁雅安職業(yè)技術(shù)學(xué)院

《字體設(shè)計(jì)與軟件應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在一個(gè)基于計(jì)算機(jī)視覺的無人駕駛系統(tǒng)中,需要對道路場景進(jìn)行理解和預(yù)測,例如判斷前方是否有行人橫穿馬路。為了實(shí)現(xiàn)準(zhǔn)確的場景理解和預(yù)測,以下哪種技術(shù)可能是關(guān)鍵?()A.語義分割B.實(shí)例分割C.場景圖生成D.以上都是2、在計(jì)算機(jī)視覺的目標(biāo)計(jì)數(shù)任務(wù)中,統(tǒng)計(jì)圖像或視頻中目標(biāo)的數(shù)量。假設(shè)要統(tǒng)計(jì)一個(gè)果園中蘋果的數(shù)量,以下關(guān)于目標(biāo)計(jì)數(shù)方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像分割和對象識(shí)別的方法,先分割出每個(gè)蘋果,然后進(jìn)行計(jì)數(shù)B.利用深度學(xué)習(xí)中的回歸模型直接預(yù)測蘋果的數(shù)量C.目標(biāo)計(jì)數(shù)不受蘋果的大小、形狀和分布的影響,任何情況下都能準(zhǔn)確計(jì)數(shù)D.結(jié)合多視角圖像或視頻序列可以提高目標(biāo)計(jì)數(shù)的準(zhǔn)確性3、在計(jì)算機(jī)視覺的圖像風(fēng)格遷移任務(wù)中,假設(shè)要將一張照片轉(zhuǎn)換為具有特定藝術(shù)風(fēng)格的圖像,以下哪種技術(shù)可能對生成逼真的風(fēng)格效果起到關(guān)鍵作用?()A.對抗生成網(wǎng)絡(luò)(GAN)B.自編碼器(Autoencoder)C.變分自編碼器(VAE)D.玻爾茲曼機(jī)(BoltzmannMachine)4、計(jì)算機(jī)視覺中的光流估計(jì)是計(jì)算圖像中像素的運(yùn)動(dòng)信息。以下關(guān)于光流估計(jì)的敘述,不正確的是()A.光流估計(jì)可以用于視頻中的運(yùn)動(dòng)分析、目標(biāo)跟蹤和動(dòng)作識(shí)別等任務(wù)B.基于深度學(xué)習(xí)的光流估計(jì)方法在精度和速度上都有了很大的提升C.光流估計(jì)只對勻速運(yùn)動(dòng)的物體有效,對于復(fù)雜的非勻速運(yùn)動(dòng)估計(jì)不準(zhǔn)確D.光流估計(jì)的結(jié)果可以為后續(xù)的計(jì)算機(jī)視覺任務(wù)提供重要的運(yùn)動(dòng)線索5、在計(jì)算機(jī)視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的上采樣方法?()A.反卷積B.亞像素卷積C.最近鄰插值D.以上都是6、在計(jì)算機(jī)視覺中,視頻摘要生成是從長視頻中提取關(guān)鍵內(nèi)容并生成簡潔的摘要。以下關(guān)于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關(guān)鍵幀提取、內(nèi)容分析和故事線構(gòu)建等方法B.深度學(xué)習(xí)方法能夠?qū)W習(xí)視頻的語義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲(chǔ)等方面具有實(shí)用價(jià)值D.視頻摘要生成能夠完全準(zhǔn)確地反映視頻的所有重要內(nèi)容,沒有任何信息丟失7、在計(jì)算機(jī)視覺的人物姿態(tài)估計(jì)任務(wù)中,需要確定圖像中人物的關(guān)節(jié)位置和姿態(tài)。假設(shè)要開發(fā)一個(gè)用于健身應(yīng)用的姿態(tài)估計(jì)系統(tǒng),以下關(guān)于模型訓(xùn)練數(shù)據(jù)的獲取,哪一項(xiàng)是比較困難的?()A.從公開的數(shù)據(jù)集獲取大量的人物姿態(tài)圖像B.自己拍攝不同人群在各種健身動(dòng)作下的圖像C.利用合成數(shù)據(jù)生成多樣化的人物姿態(tài)樣本D.從社交媒體上收集用戶分享的健身照片8、在計(jì)算機(jī)視覺領(lǐng)域中,當(dāng)需要對監(jiān)控視頻中的行人進(jìn)行實(shí)時(shí)檢測和跟蹤,以實(shí)現(xiàn)智能安防系統(tǒng)的功能時(shí),以下哪種方法在處理復(fù)雜場景和多目標(biāo)跟蹤方面可能表現(xiàn)更為出色?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的目標(biāo)檢測算法C.基于特征匹配的跟蹤算法D.基于光流法的跟蹤算法9、在計(jì)算機(jī)視覺的圖像修復(fù)任務(wù)中,恢復(fù)圖像中缺失或損壞的部分。假設(shè)要修復(fù)一張老照片中缺失的部分,以下關(guān)于圖像修復(fù)方法的描述,正確的是:()A.基于紋理合成的圖像修復(fù)方法能夠完美恢復(fù)復(fù)雜的結(jié)構(gòu)和細(xì)節(jié)B.深度學(xué)習(xí)中的自編碼器在圖像修復(fù)中無法學(xué)習(xí)到有效的特征表示C.圖像修復(fù)的結(jié)果不受缺失區(qū)域的大小和形狀的影響D.結(jié)合先驗(yàn)知識(shí)和上下文信息的深度學(xué)習(xí)方法可以產(chǎn)生更合理和自然的修復(fù)效果10、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域有重要應(yīng)用。假設(shè)要開發(fā)一個(gè)能夠識(shí)別道路標(biāo)志的系統(tǒng),以下關(guān)于應(yīng)對不同光照條件的策略,哪一項(xiàng)是最為有效的?()A.使用固定的閾值對圖像進(jìn)行二值化處理B.采用自適應(yīng)的圖像增強(qiáng)算法,根據(jù)光照情況調(diào)整圖像C.忽略光照變化,依靠模型的泛化能力D.只在特定的光照條件下收集訓(xùn)練數(shù)據(jù)11、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度不同的同一物體的圖像進(jìn)行對齊。以下關(guān)于特征匹配的方法,哪一項(xiàng)是不太可靠的?()A.使用SIFT(Scale-InvariantFeatureTransform)特征進(jìn)行匹配B.基于像素值的直接比較進(jìn)行匹配C.利用SURF(SpeededUpRobustFeatures)特征進(jìn)行匹配D.通過ORB(OrientedFASTandRotatedBRIEF)特征進(jìn)行匹配12、在計(jì)算機(jī)視覺中,圖像分類是一項(xiàng)重要任務(wù)。假設(shè)我們要對大量的動(dòng)物圖片進(jìn)行分類,將其分為貓、狗、鳥等類別。以下關(guān)于圖像分類方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色,能夠自動(dòng)學(xué)習(xí)圖像的特征B.傳統(tǒng)的機(jī)器學(xué)習(xí)方法如支持向量機(jī)(SVM)在處理大規(guī)模圖像數(shù)據(jù)時(shí),性能通常不如深度學(xué)習(xí)方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語義信息對分類結(jié)果影響不大D.為了提高分類準(zhǔn)確率,可以使用數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪等操作來擴(kuò)充數(shù)據(jù)集13、計(jì)算機(jī)視覺在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過攝像頭監(jiān)控一個(gè)公共場所,以下關(guān)于計(jì)算機(jī)視覺在安防監(jiān)控中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以實(shí)時(shí)檢測異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進(jìn)行身份識(shí)別和認(rèn)證C.計(jì)算機(jī)視覺系統(tǒng)可以獨(dú)立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力14、計(jì)算機(jī)視覺中的視覺跟蹤算法常用于跟蹤運(yùn)動(dòng)目標(biāo)。假設(shè)要跟蹤一只在森林中奔跑的動(dòng)物,以下關(guān)于視覺跟蹤算法的描述,哪一項(xiàng)是不正確的?()A.基于模型的跟蹤算法通過建立目標(biāo)的模型來預(yù)測其位置和狀態(tài)B.基于特征的跟蹤算法依賴于目標(biāo)的顯著特征進(jìn)行跟蹤C(jī).視覺跟蹤算法在目標(biāo)發(fā)生快速變形或完全遮擋時(shí)仍能保持準(zhǔn)確跟蹤D.結(jié)合多種線索和信息的融合跟蹤算法可以提高跟蹤的穩(wěn)定性和可靠性15、計(jì)算機(jī)視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)說明計(jì)算機(jī)視覺在物流領(lǐng)域的應(yīng)用。2、(本題5分)解釋計(jì)算機(jī)視覺中的圖像哈希技術(shù)。3、(本題5分)解釋計(jì)算機(jī)視覺中的自監(jiān)督學(xué)習(xí)在圖像特征提取中的應(yīng)用。4、(本題5分)簡述計(jì)算機(jī)視覺在志愿者服務(wù)中的應(yīng)用。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)使用圖像分割算法,將一張復(fù)雜的自然風(fēng)景圖像分割為不同的區(qū)域。2、(本題5分)對音樂演奏會(huì)的視頻進(jìn)行樂器音色分析和演奏技巧評(píng)估。3、(本題5分)使用計(jì)算機(jī)視覺方法,檢測圖書館內(nèi)是否有占座行為。4、(本題5分)運(yùn)用圖像識(shí)別算法,對不同品牌的手機(jī)圖像進(jìn)行分類和識(shí)別。5、(本題5分)利用目標(biāo)檢測算法,在農(nóng)業(yè)圖像中檢測病蟲害。四、分析題(本大題共4個(gè)小題,共40分)1、(本題10分)分析香奈兒的眼影廣告設(shè)計(jì),包括攝影風(fēng)格、模特造型和品牌標(biāo)志的運(yùn)用。闡述其如何傳達(dá)時(shí)尚、迷人的品牌形象。2、(本題10分)分析某品牌的名片設(shè)計(jì)中的信息傳達(dá),探討其如何通過簡潔明了的設(shè)計(jì)和有效的信息傳達(dá),展示個(gè)人或企

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論