




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省師大實驗中學高考臨考沖刺數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳新時代中國特色社會主義思想為主要內容,立足全體黨員?面向全社會的優質平臺,現日益成為老百姓了解國家動態?緊跟時代脈搏的熱門?該款軟件主要設有“閱讀文章”?“視聽學習”兩個學習模塊和“每日答題”?“每周答題”?“專項答題”?“挑戰答題”四個答題模塊?某人在學習過程中,“閱讀文章”不能放首位,四個答題板塊中有且僅有三個答題板塊相鄰的學習方法有()A.60 B.192 C.240 D.4322.已知函數,則下列結論中正確的是①函數的最小正周期為;②函數的圖象是軸對稱圖形;③函數的極大值為;④函數的最小值為.A.①③ B.②④C.②③ D.②③④3.設集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}4.運行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.5.新聞出版業不斷推進供給側結構性改革,深入推動優化升級和融合發展,持續提高優質出口產品供給,實現了行業的良性發展.下面是2012年至2016年我國新聞出版業和數字出版業營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業和數字出版業營收均逐年增加B.2016年我國數字出版業營收超過2012年我國數字出版業營收的2倍C.2016年我國新聞出版業營收超過2012年我國新聞出版業營收的1.5倍D.2016年我國數字出版營收占新聞出版營收的比例未超過三分之一6.若的展開式中的系數為-45,則實數的值為()A. B.2 C. D.7.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.8.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.39.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個發彩色光的小燈泡且在背面用導線相連(弧的兩端各一個,導線接頭忽略不計),已知扇形的半徑為30厘米,則連接導線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米10.網絡是一種先進的高頻傳輸技術,我國的技術發展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現調查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數據.如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據數據得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月11.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.12.函數的定義域為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓心在曲線上的圓中,存在與直線相切且面積為的圓,則當取最大值時,該圓的標準方程為______.14.若復數(是虛數單位),則________15.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.16.函數在區間(-∞,1)上遞增,則實數a的取值范圍是____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知直線的參數方程為(為參數)和曲線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)在極坐標系中,已知點是射線與直線的公共點,點是與曲線的公共點,求的最大值.18.(12分)已知函數(1)求f(x)的單調遞增區間;(2)△ABC內角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.19.(12分)已知函數.(1)若函數的圖象與軸有且只有一個公共點,求實數的取值范圍;(2)若對任意成立,求實數的取值范圍.20.(12分)在數列和等比數列中,,,.(1)求數列及的通項公式;(2)若,求數列的前n項和.21.(12分)設函數,,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數在區間上的取值范圍.22.(10分)已知數列滿足,.(1)求數列的通項公式;(2)若,求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法.注意按“閱讀文章”分類.【詳解】四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數為.故選:C.【點睛】本題考查排列組合的應用,考查捆綁法和插入法求解排列問題.對相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法.2、D【解析】
因為,所以①不正確;因為,所以,,所以,所以函數的圖象是軸對稱圖形,②正確;易知函數的最小正周期為,因為函數的圖象關于直線對稱,所以只需研究函數在上的極大值與最小值即可.當時,,且,令,得,可知函數在處取得極大值為,③正確;因為,所以,所以函數的最小值為,④正確.故選D.3、C【解析】
先求集合A,再用列舉法表示出集合B,再根據交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點睛】本題主要考查集合的交集運算,屬于基礎題.4、C【解析】
模擬執行程序框圖,即可容易求得結果.【詳解】運行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時要輸出的值為99.此時.故選:C.【點睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉化思想,涉及判斷條件的選擇,屬基礎題.5、C【解析】
通過圖表所給數據,逐個選項驗證.【詳解】根據圖示數據可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數據分析,題目較為簡單.6、D【解析】
將多項式的乘法式展開,結合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應用,指定項系數的求法,屬于基礎題.7、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關鍵,是基礎題.8、C【解析】
連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數的問題,熟記向量的共線定理是關鍵.屬于基礎題.9、B【解析】
由于實際問題中扇形弧長較小,可將導線的長視為扇形弧長,利用弧長公式計算即可.【詳解】因為弧長比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導線長度約為63(厘米).故選:B.【點睛】本題主要考查了扇形弧長的計算,屬于容易題.10、C【解析】
根據圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點睛】考查如何確定線性回歸直線中的系數以及線性回歸方程的實際應用,基礎題.11、B【解析】
求得直線的方程,聯立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.12、C【解析】
函數的定義域應滿足故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可得圓的面積求出圓的半徑,由圓心在曲線上,設圓的圓心坐標,到直線的距離等于半徑,再由均值不等式可得的最大值時圓心的坐標,進而求出圓的標準方程.【詳解】設圓的半徑為,由題意可得,所以,由題意設圓心,由題意可得,由直線與圓相切可得,所以,而,,所以,即,解得,所以的最大值為2,當且僅當時取等號,可得,所以圓心坐標為:,半徑為,所以圓的標準方程為:.故答案為:.【點睛】本題考查直線與圓的位置關系及均值不等式的應用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意驗正等號成立的條件.14、【解析】
直接根據復數的代數形式四則運算法則計算即可.【詳解】,.【點睛】本題主要考查復數的代數形式四則運算法則的應用.15、【解析】
先由題意設向量的坐標,再結合平面向量數量積的運算及不等式可得解.【詳解】由是單位向量.若,,設,則,,又,則,則,則,又,所以,(當或時取等)即的取值范圍是,,故答案為:,.【點睛】本題考查了平面向量數量積的坐標運算,意在考查學生對這些知識的理解掌握水平.16、【解析】
根據復合函數單調性同增異減,結合二次函數的性質、對數型函數的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數的性質和復合函數的單調性可得解得.故答案為:【點睛】本小題主要考查根據對數型復合函數的單調性求參數的取值范圍,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】
(1)先將直線l和圓C的參數方程化成普通方程,再分別求出極坐標方程;(2)寫出點M和點N的極坐標,根據極徑的定義分別表示出和,利用三角函數的性質求出的最大值.【詳解】解:(1),,即極坐標方程為,,極坐標方程.(2)由題可知,,當時,.【點睛】本題考查了參數方程、普通方程和極坐標方程的互化問題,極徑的定義,以及三角函數的恒等變換,屬于中檔題.18、(1)(2)【解析】
(1)利用降次公式、輔助角公式化簡解析式,根據三角函數單調區間的求法,求得的單調遞增區間.(2)先由求得,利用正弦定理得到,結合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數,,由,得.所以的單調遞增區間為.(2)因為且為銳角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【點睛】本小題主要考查三角恒等變換,考查三角函數單調區間的求法,考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.19、(1)(2)【解析】
(1)求出及其導函數,利用研究的單調性和最值,根據零點存在定理和零點定義可得的范圍.(2)令,題意說明時,恒成立.同樣求出導函數,由研究的單調性,通過分類討論可得的單調性得出結論.【詳解】解(1)函數所以討論:①當時,無零點;②當時,,所以在上單調遞增.取,則又,所以,此時函數有且只有一個零點;③當時,令,解得(舍)或當時,,所以在上單調遞減;當時,所以在上單調遞增.據題意,得,所以(舍)或綜上,所求實數的取值范圍為.(2)令,根據題意知,當時,恒成立.又討論:①若,則當時,恒成立,所以在上是增函數.又函數在上單調遞增,在上單調遞增,所以存在使,不符合題意.②若,則當時,恒成立,所以在上是增函數,據①求解知,不符合題意.③若,則當時,恒有,故在上是減函數,于是“對任意成立”的充分條件是“”,即,解得,故綜上,所求實數的取值范圍是.【點睛】本題考查函數零點問題,考查不等式恒成立問題,考查用導數研究函數的單調性.解題關鍵是通過分類討論研究函數的單調性.本題難度較大,考查掌握轉化與化歸思想,考查學生分析問題解決問題的能力.20、(1),(2)【解析】
(1)根據與可求得,再根據等比數列的基本量求解即可.(2)由(1)可得,再利用錯位相減求和即可.【詳解】解:(1)依題意,,設數列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【點睛】本題主要考查了等比數列的基本量求解以及錯位相減求和等.屬于中檔題.21、(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結果,注意復合函數求導法則,接著應用點斜式寫出直線的方程;(2)先將函數解析式求出,之后借助于導數研究函數的單調性,從而求得函數在相應區間上的最值.詳解:(Ⅰ)當,.,當,,所以切線方程為.(Ⅱ),,因為,所以.令,,則在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 光學軟件測試題及答案
- 美術培訓講座
- 2025年 阜陽臨泉城關街道桃花源幼兒園教師招聘考試筆試試卷附答案
- 2025年 北京公務員考試筆試考試試卷附答案
- 2025年主題團日活動策劃與實施
- 小學交通教育課件
- 左膝關節置換術后護理
- 2025年中國墨西哥胡椒鹽行業市場全景分析及前景機遇研判報告
- 子宮畸形超聲分類及診斷
- 支氣管肺炎相關疾病知識
- 2025年河南省高考物理真題(解析版)
- 2025中國心肌病綜合管理指南要點解讀課件
- 7數滬科版期末考試卷-2024-2025學年七年級(初一)數學下冊期末考試模擬卷03
- 涼山州木里縣選聘社區工作者筆試真題2024
- 2025年中國太平洋人壽保險股份有限公司勞動合同
- 配電線路高級工練習試題附答案
- 護士N2理論考試試題及答案
- 2025年河北省中考麒麟卷地理(二)
- 第23課+和平發展合作共贏的時代潮流+課件高一歷史下學期統編版(2019)必修中外歷史綱要下
- 公共組織績效評估-形考任務一(占10%)-國開(ZJ)-參考資料
- GB/T 45439-2025燃氣氣瓶和燃氣瓶閥溯源二維碼應用技術規范
評論
0/150
提交評論