




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省蘇州大學2025屆高三第二次調研數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數為().A.432 B.576 C.696 D.9603.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內一點,則三棱錐的正視圖與側視圖的面積之和為()A.2 B.3 C.4 D.54.設命題函數在上遞增,命題在中,,下列為真命題的是()A. B. C. D.5.函數的圖象大致是()A. B.C. D.6.已知正四棱錐的側棱長與底面邊長都相等,是的中點,則所成的角的余弦值為()A. B. C. D.7.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③8.設函數(,)是上的奇函數,若的圖象關于直線對稱,且在區間上是單調函數,則()A. B. C. D.9.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.10.已知集合.為自然數集,則下列表示不正確的是()A. B. C. D.11.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.12.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.6二、填空題:本題共4小題,每小題5分,共20分。13.如圖,從一個邊長為的正三角形紙片的三個角上,沿圖中虛線剪出三個全等的四邊形,余下部分再以虛線為折痕折起,恰好圍成一個缺少上底的正三棱柱,而剪出的三個相同的四邊形恰好拼成這個正三棱柱的上底,則所得正三棱柱的體積為______.14.在的二項展開式中,x的系數為________.(用數值作答)15.已知實數滿約束條件,則的最大值為___________.16.已知函數,則不等式的解集為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,,是邊上一點,且,.(1)求的長;(2)若的面積為14,求的長.18.(12分)如圖,已知,分別是正方形邊,的中點,與交于點,,都垂直于平面,且,,是線段上一動點.(1)當平面,求的值;(2)當是中點時,求四面體的體積.19.(12分)在直角坐標系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側)滿足,且的周長為,求的值.20.(12分)已知拋物線的準線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.21.(12分)某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優秀傳統文化中的動漫題材,創作出一批又一批的優秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司年至年的年利潤關于年份代號的統計數據如下表(已知該公司的年利潤與年份代號線性相關).年份年份代號年利潤(單位:億元)(Ⅰ)求關于的線性回歸方程,并預測該公司年(年份代號記為)的年利潤;(Ⅱ)當統計表中某年年利潤的實際值大于由(Ⅰ)中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.將(Ⅰ)中預測的該公司年的年利潤視作該年利潤的實際值,現從年至年這年中隨機抽取年,求恰有年為級利潤年的概率.參考公式:,.22.(10分)在中,內角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當的面積取得最大值時,求AD的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
三視圖對應的幾何體為如圖所示的幾何體,利用割補法可求其體積.【詳解】根據三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點睛】本題考查三視圖以及不規則幾何體的體積,復原幾何體時注意三視圖中的點線關系與幾何體中的點、線、面的對應關系,另外,不規則幾何體的體積可用割補法來求其體積,本題屬于基礎題.2、B【解析】
先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產生的空檔中,共有種不同方式;根據分類加法、分步乘法原理,得滿足要求的排隊方法數為種.故選:B.【點睛】本題考查排列組合的綜合應用,在分類時,要注意不重不漏的原則,本題是一道中檔題.3、A【解析】
根據幾何體分析正視圖和側視圖的形狀,結合題干中的數據可計算出結果.【詳解】由三視圖的性質和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.4、C【解析】
命題:函數在上單調遞減,即可判斷出真假.命題:在中,利用余弦函數單調性判斷出真假.【詳解】解:命題:函數,所以,當時,,即函數在上單調遞減,因此是假命題.命題:在中,在上單調遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數的單調性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.5、B【解析】
根據函數表達式,把分母設為新函數,首先計算函數定義域,然后求導,根據導函數的正負判斷函數單調性,對應函數圖像得到答案.【詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.6、C【解析】試題分析:設的交點為,連接,則為所成的角或其補角;設正四棱錐的棱長為,則,所以,故C為正確答案.考點:異面直線所成的角.7、C【解析】
根據直線與平面,平面與平面的位置關系進行判斷即可.【詳解】根據面面平行的性質以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關系,屬于中檔題.8、D【解析】
根據函數為上的奇函數可得,由函數的對稱軸及單調性即可確定的值,進而確定函數的解析式,即可求得的值.【詳解】函數(,)是上的奇函數,則,所以.又的圖象關于直線對稱可得,,即,,由函數的單調區間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數的圖象與性質的綜合應用,由對稱軸、奇偶性及單調性確定參數,屬于中檔題.9、A【解析】
由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點睛】本題主要考查由三視圖求面積、體積,關鍵是由三視圖還原原幾何體,意在考查學生對這些知識的理解掌握水平.10、D【解析】
集合.為自然數集,由此能求出結果.【詳解】解:集合.為自然數集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關系、集合與集合的關系等基礎知識,考查運算求解能力,是基礎題.11、A【解析】
利用平面向量的概念、平面向量的加法、減法、數乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.12、B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由題意得正三棱柱底面邊長6,高為,由此能求出所得正三棱柱的體積.【詳解】如圖,作,交于,,由題意得正三棱柱底面邊長,高為,所得正三棱柱的體積為:.故答案為:1.【點睛】本題考查立體幾何中的翻折問題、正三棱柱體積的求法、三棱柱的結構特征等基礎知識,考查空間想象能力、運算求解能力,求解時注意翻折前后的不變量.14、-40【解析】
由題意,可先由公式得出二項展開式的通項,再令10-3r=1,得r=3即可得出x項的系數【詳解】的二項展開式的通項公式為,r=0,1,2,3,4,5,令,所以的二項展開式中x項的系數為.故答案為:-40.【點睛】本題考查二項式定理的應用,解題關鍵是靈活掌握二項式展開式通項的公式,屬于基礎題.15、8【解析】
畫出可行域和目標函數,根據平移計算得到答案.【詳解】根據約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數表示直線在軸上的截距,由圖可知當經過點時截距最大,故的最大值為8.故答案為:.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.16、【解析】
,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點睛】本題考查分段函數的應用,涉及到解一元二次不等式,考查學生的計算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)5.【解析】
(1)由同角三角函數關系求得,再由兩角差的正弦公式求得,最后由正弦定理構建方程,求得答案.(2)在中,由正弦定理構建方程求得AB,再由任意三角形的面積公式構建方程求得BC,最后由余弦定理構建方程求得AC.【詳解】(1)據題意,,且,所以.所以.在中,據正弦定理可知,,所以.(2)在中,據正弦定理可知,所以.因為的面積為14,所以,即,得.在中,據余弦定理可知,,所以.【點睛】本題考查由正弦定理與余弦定理解三角形,還考查了由同角三角函數關系和兩角差的正弦公式化簡求值,屬于簡單題.18、(1).(2)【解析】
(1)利用線面垂直的性質得出,進而得出,利用相似三角形的性質,得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進而得出四面體的體積,計算出,,即可得出四面體的體積.【詳解】(1)因為平面,平面,所以又因為,都垂直于平面,所以又,分別是正方形邊,的中點,且,所以.(2)因為,分別是正方形邊,的中點,所以又因為,都垂直于平面,平面,所以因為平面,所以平面所以,四面體的體積,所以.【點睛】本題主要考查了線面垂直的性質定理的應用,以及求棱錐的體積,屬于中檔題.19、(1);(2)【解析】
(1)設,則由題設條件可得,化簡后可得軌跡的方程.(2)設直線,聯立直線方程和拋物線方程后利用韋達定理化簡并求得,結合焦半徑公式及弦長公式可求的值及的長.【詳解】(1)設,則圓心的坐標為,因為以線段為直徑的圓與軸相切,所以,化簡得的方程為.(2)由題意,設直線,聯立得,設(其中)所以,,且,因為,所以,,所以,故或(舍),直線,因為的周長為所以.即,因為.又,所以,解得,所以.【點睛】本題考查曲線方程以及拋物線中的弦長計算,還涉及到向量的數量積.一般地,拋物線中的弦長問題,一般可通過聯立方程組并消元得到關于或的一元二次方程,再把已知等式化為關于兩個的交點橫坐標或縱坐標的關系式,該關系中含有或,最后利用韋達定理把關系式轉化為某一個變量的方程.本題屬于中檔題.20、(1);(2)或.【解析】
(1)由拋物線的準線方程求出的值,確定左焦點坐標,再由點F到直線l:的距離為4,求出即可;(2)設直線方程,與橢圓方程聯立,運用根與系數關系和弦長公式,以及兩直線垂直的條件和中點坐標公式,即可得到所求直線的方程.【詳解】(1)拋物線的準線方程為,,直線,點F到直線l的距離為,,所以橢圓的標準方程為;(2)依題意斜率不為0,又過點,設方程為,聯立,消去得,,,設,,,,線段AB的中垂線交直線l于點Q,所以橫坐標為3,,,,平方整理得,解得或(舍去),,所求的直線方程為或.【點睛】本題考查橢圓的方程以及直線與橢圓的位置關系,要熟練應用根與系數關系、相交弦長公式,合理運用兩點間的距離公式,考查計算求解能力,屬于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司春節職工活動方案
- 公司電影活動方案
- 公司每年活動方案
- 公司生態酒會活動方案
- 公司活動視頻策劃方案
- 公司愛心捐助活動方案
- 公司新聞策劃方案
- 公司播音室活動方案
- 公司新入職活動策劃方案
- 公司旅游節目策劃方案
- GB/T 620-2011化學試劑氫氟酸
- GB/T 28728-2012溶液聚合苯乙烯-丁二烯橡膠(SSBR)微觀結構的測定
- 小學《科學》期末測評方案
- GB 18613-2006中小型三相異步電動機能效限定值及能效等級
- 2023年湘西市(中小學、幼兒園)教師招聘筆試題庫及答案解析
- 公司企業實習鑒定表格
- 鎖骨下動脈竊血綜合征 (2)PPT
- 大學畢業生離校退宿申請表模板
- 大班社會《愛發脾氣的菲菲》課件
- 【海外華文文學】期末考試復習提綱
- 化工進展稿件編輯、排版體例格式
評論
0/150
提交評論