云南楚雄州南華縣民中2025屆高三一診考試數學試卷含解析_第1頁
云南楚雄州南華縣民中2025屆高三一診考試數學試卷含解析_第2頁
云南楚雄州南華縣民中2025屆高三一診考試數學試卷含解析_第3頁
云南楚雄州南華縣民中2025屆高三一診考試數學試卷含解析_第4頁
云南楚雄州南華縣民中2025屆高三一診考試數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南楚雄州南華縣民中2025屆高三一診考試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則集合子集的個數為()A. B. C. D.2.已知函數的圖像向右平移個單位長度后,得到的圖像關于軸對稱,,當取得最小值時,函數的解析式為()A. B.C. D.3.若θ是第二象限角且sinθ=,則=A. B. C. D.4.已知集合,,則()A. B. C. D.5.已知復數(為虛數單位),則下列說法正確的是()A.的虛部為 B.復數在復平面內對應的點位于第三象限C.的共軛復數 D.6.向量,,且,則()A. B. C. D.7.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.8.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.9.已知實數滿足則的最大值為()A.2 B. C.1 D.010.已知定義在上的函數滿足,且當時,.設在上的最大值為(),且數列的前項的和為.若對于任意正整數不等式恒成立,則實數的取值范圍為()A. B. C. D.11.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.512.如圖所示的程序框圖輸出的是126,則①應為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從甲、乙等8名志愿者中選5人參加周一到周五的社區服務,每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當甲、乙兩人都參加時,他們參加社區服務的日期不相鄰,那么不同的安排種數為______________.(用數字作答)14.如圖,在等腰三角形中,已知,,分別是邊上的點,且,其中且,若線段的中點分別為,則的最小值是_____.15.設是公差不為0的等差數列的前n項和,且,則______.16.某校開展“我身邊的榜樣”評選活動,現對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票.這3名候選人的得票數(不考慮是否有效)分別為總票數的88%,75%,46%,則本次投票的有效率(有效票數與總票數的比值)最高可能為百分之________.“我身邊的榜樣”評選選票候選人符號注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個數不超過2時才為有效票.甲乙丙三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點.(1)求證:.(2)若,求二面角的余弦值.18.(12分)已知直線l的極坐標方程為,圓C的參數方程為(為參數).(1)請分別把直線l和圓C的方程化為直角坐標方程;(2)求直線l被圓截得的弦長.19.(12分)已知函數.(1)當時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.20.(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.21.(12分)已知橢圓:的兩個焦點是,,在橢圓上,且,為坐標原點,直線與直線平行,且與橢圓交于,兩點.連接、與軸交于點,.(1)求橢圓的標準方程;(2)求證:為定值.22.(10分)已知函數.(1)求函數f(x)的最小正周期;(2)求在上的最大值和最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

首先求出,再根據含有個元素的集合有個子集,計算可得.【詳解】解:,,,子集的個數為.故選:.【點睛】考查列舉法、描述法的定義,以及交集的運算,集合子集個數的計算公式,屬于基礎題.2、A【解析】

先求出平移后的函數解析式,結合圖像的對稱性和得到A和.【詳解】因為關于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數的圖像變換及性質.平移圖像時需注意x的系數和平移量之間的關系.3、B【解析】由θ是第二象限角且sinθ=知:,.所以.4、B【解析】

求出集合,利用集合的基本運算即可得到結論.【詳解】由,得,則集合,所以,.故選:B.【點睛】本題主要考查集合的基本運算,利用函數的性質求出集合是解決本題的關鍵,屬于基礎題.5、D【解析】

利用的周期性先將復數化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內對應的點為,在第二象限,B錯誤;的共軛復數為,C錯誤;,D正確.故選:D.【點睛】本題考查復數的四則運算,涉及到復數的虛部、共軛復數、復數的幾何意義、復數的模等知識,是一道基礎題.6、D【解析】

根據向量平行的坐標運算以及誘導公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數以及誘導公式的應用,屬于中檔題.7、D【解析】

設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.8、D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).9、B【解析】

作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經過點時,其截距最大,此時最大得,當時,故選:B【點睛】考查線性規劃,是基礎題.10、C【解析】

由已知先求出,即,進一步可得,再將所求問題轉化為對于任意正整數恒成立,設,只需找到數列的最大值即可.【詳解】當時,則,,所以,,顯然當時,,故,,若對于任意正整數不等式恒成立,即對于任意正整數恒成立,即對于任意正整數恒成立,設,,令,解得,令,解得,考慮到,故有當時,單調遞增,當時,有單調遞減,故數列的最大值為,所以.故選:C.【點睛】本題考查數列中的不等式恒成立問題,涉及到求函數解析、等比數列前n項和、數列單調性的判斷等知識,是一道較為綜合的數列題.11、C【解析】試題分析:由已知,-2a+i=1-bi,根據復數相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點:復數的代數運算,復數相等的充要條件,復數的模12、B【解析】試題分析:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環的條件.解:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環的條件.∵S=2+22+…+21=121,故①中應填n≤1.故選B點評:算法是新課程中的新增加的內容,也必然是新高考中的一個熱點,應高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤.二、填空題:本題共4小題,每小題5分,共20分。13、5040.【解析】分兩類,一類是甲乙都參加,另一類是甲乙中選一人,方法數為。填5040.【點睛】利用排列組合計數時,關鍵是正確進行分類和分步,分類時要注意不重不漏.在本題中,甲與乙是兩個特殊元素,對于特殊元素“優先法”,所以有了分類。本題還涉及不相鄰問題,采用“插空法”。14、【解析】

根據條件及向量數量積運算求得,連接,由三角形中線的性質表示出.根據向量的線性運算及數量積公式表示出,結合二次函數性質即可求得最小值.【詳解】根據題意,連接,如下圖所示:在等腰三角形中,已知,則由向量數量積運算可知線段的中點分別為則由向量減法的線性運算可得所以因為,代入化簡可得因為所以當時,取得最小值因而故答案為:【點睛】本題考查了平面向量數量積的綜合應用,向量的線性運算及模的求法,二次函數最值的應用,屬于中檔題.15、18【解析】

將已知已知轉化為的形式,化簡后求得,利用等差數列前公式化簡,由此求得表達式的值.【詳解】因為,所以.故填:.【點睛】本題考查等差數列基本量的計算,考查等差數列的性質以及求和,考查運算求解能力,屬于基礎題.16、91【解析】

設共有選票張,且票對應張數為,由此可構造不等式組化簡得到,由投票有效率越高越小,可知,由此計算可得投票有效率.【詳解】不妨設共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數與總票數的比值)最高可能為.故答案為:.【點睛】本題考查線性規劃的實際應用問題,關鍵是能夠根據已知條件構造出變量所滿足的關系式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)由已知可證明平面,從而得證面面垂直,再由,得線面垂直,從而得,由直角三角形得結論;(2)以為軸建立空間直角坐標系,用空間向量法示二面角.【詳解】(1)證明:連接,,.,,平面.平面,平面平面.,為的中點,.平面平面,平面.平面,.為斜邊的中點,,(2),由(1)可知,為等腰直角三角形,則.以為坐標原點建立如圖所示的空間直角坐標系,則,,,,則,記平面的法向量為由得到,取,可得,則.易知平面的法向量為.記二面角的平面角為,且由圖可知為銳角,則,所以二面角的余弦值為.【點睛】本題考查用面面垂直的性質定理證明線面垂直,從而得線線垂直,考查用空間向量法求二面角.在立體幾何中求異面直線成的角、直線與平面所成的角、二面角等空間角時,可以建立空間直角坐標系,用空間向量法求解空間角,可避免空間角的作證過程,通過計算求解.18、(1).x2+y2=1.(2)16【解析】

(1)直接利用極坐標方程和參數方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.【點睛】本題考查了極坐標方程和參數方程,圓的弦長,意在考查學生的計算能力和轉化能力.19、(1);(2)【解析】

(1),對函數求導,分別求出和,即可求出在點處的切線方程;(2)對求導,分、和三種情況討論的單調性,再結合在上恒成立,可求得的取值范圍.【詳解】(1)因為,所以,所以,則,故曲線在點處的切線方程為.(2)因為,所以,①當時,在上恒成立,則在上單調遞增,從而成立,故符合題意;②當時,令,解得,即在上單調遞減,則,故不符合題意;③當時,在上恒成立,即在上單調遞減,則,故不符合題意.綜上,的取值范圍為.【點睛】本題考查了曲線的切線方程的求法,考查了利用導數研究函數的單調性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.20、(1)(2)是為定值,的橫坐標為定值【解析】

(1)根據“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結合橢圓離心率以及,求得,由此求得橢圓方程.(2)設出直線的方程,聯立直線的方程和橢圓方程,化簡后寫出根與系數關系.求得直線的方程,并求得兩直線交點的橫坐標,結合根與系數關系進行化簡,求得的橫坐標為定值.【詳解】(1)依題意可知,解得,即;而,即,結合解得,,因此橢圓方程為(2)由題意得,左焦點,設直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯系方程,解得,又因為.所以.所以的橫坐標為定值.【點睛】本小題主要考查根據橢圓離心率求橢圓方程,考查直線和橢圓的位置關系,考查直線和直線交點坐標的求法,考查運算求解能力,屬于中檔題.21、(1)(2)證明見解析【解析】

(1)根據橢圓的定義可得,將代入橢圓方程,即可求得的值,求得橢圓方程;(2)設直線的方程,代入橢圓方程,求得直線和的方程,求得和的橫坐標,表示出,根據韋達定理即可求證為定值.【詳解】(1)因為,由橢圓的定義得,,點在橢圓上,代入橢圓方程,解得,所以的方程為;(2)證明:設,,直線的斜率為,設直線的方程為,聯立方程組,消去,整理得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論