江蘇省97校大聯考2025屆高考考前提分數學仿真卷含解析_第1頁
江蘇省97校大聯考2025屆高考考前提分數學仿真卷含解析_第2頁
江蘇省97校大聯考2025屆高考考前提分數學仿真卷含解析_第3頁
江蘇省97校大聯考2025屆高考考前提分數學仿真卷含解析_第4頁
江蘇省97校大聯考2025屆高考考前提分數學仿真卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省97校大聯考2025屆高考考前提分數學仿真卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正項等比數列的前項和為,則的最小值為()A. B. C. D.2.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.3.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.4.定義在R上的偶函數滿足,且在區間上單調遞減,已知是銳角三角形的兩個內角,則的大小關系是()A. B.C. D.以上情況均有可能5.函數,,則“的圖象關于軸對稱”是“是奇函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知向量,,若,則與夾角的余弦值為()A. B. C. D.7.函數在區間上的大致圖象如圖所示,則可能是()A.B.C.D.8.已知函數,其中表示不超過的最大正整數,則下列結論正確的是()A.的值域是 B.是奇函數C.是周期函數 D.是增函數9.設復數滿足(為虛數單位),則復數的共軛復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.一個幾何體的三視圖如圖所示,正視圖、側視圖和俯視圖都是由一個邊長為的正方形及正方形內一段圓弧組成,則這個幾何體的表面積是()A. B. C. D.11.已知是定義是上的奇函數,滿足,當時,,則函數在區間上的零點個數是()A.3 B.5 C.7 D.912.已知復數,則的虛部是()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.函數的定義域是__________.14.某市高三理科學生有名,在一次調研測試中,數學成績服從正態分布,已知,若按成績分層抽樣的方式取份試卷進行分析,則應從分以上的試卷中抽取的份數為__________.15.(5分)在平面直角坐標系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.16.若存在實數使得不等式在某區間上恒成立,則稱與為該區間上的一對“分離函數”,下列各組函數中是對應區間上的“分離函數”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.18.(12分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.19.(12分)已知函數f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數f(x)的單調區間;(2)設g(x)=f(x)1,若函數g(x)在上有兩個零點,求實數a的取值范圍.20.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.21.(12分)已知橢圓:(),四點,,,中恰有三點在橢圓上.(1)求橢圓的方程;(2)設橢圓的左右頂點分別為.是橢圓上異于的動點,求的正切的最大值.22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關系,并給出證明.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由,可求出等比數列的通項公式,進而可知當時,;當時,,從而可知的最小值為,求解即可.【詳解】設等比數列的公比為,則,由題意得,,得,解得,得.當時,;當時,,則的最小值為.故選:D.【點睛】本題考查等比數列的通項公式的求法,考查等比數列的性質,考查學生的計算求解能力,屬于中檔題.2、C【解析】

由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學生空間想象,數學運算能力,難度一般.3、B【解析】

,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算、數乘運算,考查學生的運算能力,是一道中檔題.4、B【解析】

由已知可求得函數的周期,根據周期及偶函數的對稱性可求在上的單調性,結合三角函數的性質即可比較.【詳解】由可得,即函數的周期,因為在區間上單調遞減,故函數在區間上單調遞減,根據偶函數的對稱性可知,在上單調遞增,因為,是銳角三角形的兩個內角,所以且即,所以即,.故選:.【點睛】本題主要考查函數值的大小比較,根據函數奇偶性和單調性之間的關系是解決本題的關鍵.5、B【解析】

根據函數奇偶性的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】設,若函數是上的奇函數,則,所以,函數的圖象關于軸對稱.所以,“是奇函數”“的圖象關于軸對稱”;若函數是上的偶函數,則,所以,函數的圖象關于軸對稱.所以,“的圖象關于軸對稱”“是奇函數”.因此,“的圖象關于軸對稱”是“是奇函數”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結合函數奇偶性的性質判斷是解決本題的關鍵,考查推理能力,屬于中等題.6、B【解析】

直接利用向量的坐標運算得到向量的坐標,利用求得參數m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數量積的應用,考查運算求解能力以及化歸與轉化思想.7、B【解析】

根據特殊值及函數的單調性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調,故排除C;故選:B【點睛】本題考查根據函數圖象選擇函數解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.8、C【解析】

根據表示不超過的最大正整數,可構建函數圖象,即可分別判斷值域、奇偶性、周期性、單調性,進而下結論.【詳解】由表示不超過的最大正整數,其函數圖象為選項A,函數,故錯誤;選項B,函數為非奇非偶函數,故錯誤;選項C,函數是以1為周期的周期函數,故正確;選項D,函數在區間上是增函數,但在整個定義域范圍上不具備單調性,故錯誤.故選:C【點睛】本題考查對題干的理解,屬于函數新定義問題,可作出圖象分析性質,屬于較難題.9、D【解析】

先把變形為,然后利用復數代數形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【點睛】此題考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.10、C【解析】

畫出直觀圖,由球的表面積公式求解即可【詳解】這個幾何體的直觀圖如圖所示,它是由一個正方體中挖掉個球而形成的,所以它的表面積為.故選:C【點睛】本題考查三視圖以及幾何體的表面積的計算,考查空間想象能力和運算求解能力.11、D【解析】

根據是定義是上的奇函數,滿足,可得函數的周期為3,再由奇函數的性質結合已知可得,利用周期性可得函數在區間上的零點個數.【詳解】∵是定義是上的奇函數,滿足,,可得,

函數的周期為3,

∵當時,,

令,則,解得或1,

又∵函數是定義域為的奇函數,

∴在區間上,有.

由,取,得,得,

∴.

又∵函數是周期為3的周期函數,

∴方程=0在區間上的解有共9個,

故選D.【點睛】本題考查根的存在性及根的個數判斷,考查抽象函數周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.12、C【解析】

化簡復數,分子分母同時乘以,進而求得復數,再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復數的乘法、除法運算,考查共軛復數的虛部,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由,得,所以,所以原函數定義域為,故答案為.14、【解析】

由題意結合正態分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應從分以上的試卷中抽取份.故答案為:.【點睛】本題考查正態分布曲線,屬于基礎題.15、【解析】

方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設,則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.16、①②④【解析】

由題意可知,若要存在使得成立,我們可考慮兩函數是否存在公切點,若兩函數在公切點對應的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調遞增,,即.令,則,單調遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調遞增,在上單調遞減,所以,即.令,則,易知在上單調遞減,在上單調遞增,所以,即.因此,滿足題意.故答案為:①②④【點睛】本題考查新定義題型、利用導數研究函數圖像,轉化與化歸思想,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)根據面面垂直性質及線面垂直性質,可證明;由所給線段關系,結合勾股定理逆定理,可證明,進而由線面垂直的判定定理證明平面.(2)建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,由空間向量法求得兩個平面夾角的余弦值,結合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標系,則,,,,,,.設平面的法向量是,則,令,,由(1)可知平面的法向量是,∴,由圖可知,二面角為鈍二面角,所以二面角的大小為.【點睛】本題考查了線面垂直的判定,面面垂直及線面垂直的性質應用,空間向量法求二面角的大小,屬于中檔題.18、(1)(2)【解析】

(1)通過討論的范圍,得到關于的不等式組,解出取并集即可.(2)去絕對值將函數寫成分段函數形式討論分段函數的單調性由恒成立求得結果.【詳解】解:(1)當時,,即或或解之得或,即不等式的解集為.(2)由題意得:當時為減函數,顯然恒成立.當時,為增函數,,當時,為減函數,綜上所述:使恒成立的的取值范圍為.【點睛】本題考查了解絕對值不等式問題,考查不等式恒成立問題中求解參數問題,考查分類討論思想,轉化思想,屬于中檔題.19、(1)單調遞減區間為(0,1),單調遞增區間為(1,+∞)(2)(3,2e]【解析】

(1)當a=2時,求出,求解,即可得出結論;(2)函數在上有兩個零點等價于a=2x在上有兩解,構造函數,,利用導數,可分析求得實數a的取值范圍.【詳解】(1)當a=2時,定義域為,則,令,解得x1,或x1(舍去),所以當時,單調遞減;當時,單調遞增;故函數的單調遞減區間為,單調遞增區間為,(2)設,函數g(x)在上有兩個零點等價于在上有兩解令,,則,令,,顯然,在區間上單調遞增,又,所以當時,有,即,當時,有,即,所以在區間上單調遞減,在區間上單調遞增,時,取得極小值,也是最小值,即,由方程在上有兩解及,可得實數a的取值范圍是.【點睛】本題考查了利用導數研究函數的單調性極值與最值、等價轉化思想以及數形結合思想,考查邏輯推理、數學計算能力,屬于中檔題.20、(1)見解析(2)【解析】

(Ⅰ)取的中點,連結、,得到故且,進而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標原點建立如圖空間直角坐標系,設,求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點,使得平面,點為棱的中點.理由如下:取的中點,連結、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標原點建立如圖空間直角坐標系,設,則由題意知,,,,,,設平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.【點睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,通過嚴密推理,明確角的構成,著重考查了分析問題和解答問題的能力.21、(1);(2)【解析】

(1)分析可得必在橢圓上,不在橢圓上,代入即得解;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論