



下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)中國(guó)計(jì)量大學(xué)《傳播學(xué)原理與技能》
2021-2022學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)中,以下哪種方法常用于圖像的目標(biāo)檢測(cè)中的遮擋處理?()A.上下文信息B.跟蹤歷史C.多視角融合D.以上都是2、計(jì)算機(jī)視覺(jué)中的場(chǎng)景理解是一項(xiàng)具有挑戰(zhàn)性的任務(wù)。假設(shè)要理解一個(gè)城市街道的場(chǎng)景圖像,包括道路、建筑物、車(chē)輛和行人等元素。以下關(guān)于場(chǎng)景理解方法的描述,正確的是:()A.基于語(yǔ)義分割的方法能夠?qū)D像中的每個(gè)像素分類為不同的場(chǎng)景元素,但無(wú)法提供元素之間的關(guān)系B.目標(biāo)檢測(cè)結(jié)合語(yǔ)義分割可以實(shí)現(xiàn)對(duì)場(chǎng)景的初步理解,但對(duì)于復(fù)雜的場(chǎng)景結(jié)構(gòu)難以準(zhǔn)確描述C.基于圖模型的方法能夠很好地表示場(chǎng)景元素之間的關(guān)系,但建模過(guò)程復(fù)雜,計(jì)算量大D.場(chǎng)景理解只需要對(duì)圖像中的可見(jiàn)元素進(jìn)行分析,不需要考慮潛在的語(yǔ)義信息3、在計(jì)算機(jī)視覺(jué)中,圖像分類是一項(xiàng)基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動(dòng)物的圖像數(shù)據(jù)集,需要訓(xùn)練一個(gè)模型來(lái)準(zhǔn)確區(qū)分不同的動(dòng)物類別。在選擇圖像分類模型時(shí),以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時(shí)表現(xiàn)出色?()A.傳統(tǒng)的機(jī)器學(xué)習(xí)算法,如支持向量機(jī)(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)4、在計(jì)算機(jī)視覺(jué)的場(chǎng)景理解任務(wù)中,需要對(duì)圖像中的物體、關(guān)系和上下文進(jìn)行綜合分析。假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和功能,以下哪種信息可能是最關(guān)鍵的?()A.物體的形狀和顏色B.物體之間的空間位置關(guān)系C.圖像的亮度和對(duì)比度D.圖像的拍攝角度5、在計(jì)算機(jī)視覺(jué)的圖像生成任務(wù)中,假設(shè)要生成具有真實(shí)感的自然圖像。以下關(guān)于圖像生成方法的描述,正確的是:()A.生成對(duì)抗網(wǎng)絡(luò)(GAN)能夠生成逼真的圖像,但訓(xùn)練過(guò)程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實(shí)感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質(zhì)量的圖像D.所有的圖像生成方法都能夠生成與真實(shí)世界完全一致的圖像6、在計(jì)算機(jī)視覺(jué)的圖像風(fēng)格遷移任務(wù)中,將一張圖像的風(fēng)格應(yīng)用到另一張圖像上。假設(shè)要將一幅油畫(huà)的風(fēng)格遷移到一張照片上,以下關(guān)于圖像風(fēng)格遷移方法的描述,正確的是:()A.基于手工特征提取和風(fēng)格轉(zhuǎn)換的方法能夠?qū)崿F(xiàn)自然逼真的風(fēng)格遷移B.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在風(fēng)格遷移中無(wú)法生成多樣化的風(fēng)格效果C.圖像的內(nèi)容和風(fēng)格可以完全獨(dú)立地進(jìn)行處理,互不影響D.考慮圖像的局部和全局特征以及語(yǔ)義信息能夠提升風(fēng)格遷移的質(zhì)量7、在一個(gè)基于計(jì)算機(jī)視覺(jué)的智能交通監(jiān)控系統(tǒng)中,需要對(duì)車(chē)輛的類型、速度和行駛軌跡進(jìn)行分析。以下哪種技術(shù)在車(chē)輛分析方面可能發(fā)揮關(guān)鍵作用?()A.目標(biāo)檢測(cè)和跟蹤B.車(chē)牌識(shí)別C.軌跡預(yù)測(cè)D.以上都是8、在計(jì)算機(jī)視覺(jué)的圖像檢索任務(wù)中,需要根據(jù)用戶提供的示例圖像從大規(guī)模圖像數(shù)據(jù)庫(kù)中找到相似的圖像。假設(shè)要構(gòu)建一個(gè)高效的圖像搜索引擎,能夠快速準(zhǔn)確地返回相關(guān)圖像。以下哪種圖像檢索方法在處理大規(guī)模數(shù)據(jù)時(shí)性能更優(yōu)?()A.基于內(nèi)容的圖像檢索B.基于文本標(biāo)注的圖像檢索C.基于哈希編碼的圖像檢索D.基于深度學(xué)習(xí)特征的圖像檢索9、計(jì)算機(jī)視覺(jué)是一門(mén)研究如何讓計(jì)算機(jī)從圖像或視頻中獲取信息和理解內(nèi)容的學(xué)科。在計(jì)算機(jī)視覺(jué)的應(yīng)用中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。以下關(guān)于目標(biāo)檢測(cè)的描述,不準(zhǔn)確的是()A.目標(biāo)檢測(cè)能夠準(zhǔn)確識(shí)別圖像或視頻中特定類別的物體,并確定其位置和大小B.深度學(xué)習(xí)技術(shù)的發(fā)展極大地提高了目標(biāo)檢測(cè)的準(zhǔn)確性和效率C.目標(biāo)檢測(cè)只適用于靜態(tài)圖像,對(duì)于動(dòng)態(tài)視頻的處理效果不佳D.目標(biāo)檢測(cè)在自動(dòng)駕駛、安防監(jiān)控和工業(yè)檢測(cè)等領(lǐng)域有著廣泛的應(yīng)用10、在計(jì)算機(jī)視覺(jué)的視頻壓縮中,為了在保證視覺(jué)質(zhì)量的同時(shí)減少數(shù)據(jù)量,以下哪種技術(shù)可能被廣泛應(yīng)用?()A.運(yùn)動(dòng)估計(jì)和補(bǔ)償B.圖像分割C.特征點(diǎn)檢測(cè)D.邊緣檢測(cè)11、在計(jì)算機(jī)視覺(jué)的目標(biāo)識(shí)別任務(wù)中,假設(shè)要識(shí)別不同種類的水果。以下關(guān)于應(yīng)對(duì)類內(nèi)差異和類間相似性的策略,哪一項(xiàng)是不正確的?()A.增加訓(xùn)練數(shù)據(jù)的多樣性,包括不同角度、大小和成熟度的水果B.提取更具區(qū)分性的特征,減少類內(nèi)差異和類間相似性的影響C.降低模型的復(fù)雜度,避免過(guò)度擬合類內(nèi)差異和類間相似性D.忽略類內(nèi)差異和類間相似性,依靠模型的自動(dòng)適應(yīng)能力12、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,我們需要從多幅二維圖像中恢復(fù)物體的三維結(jié)構(gòu)。假設(shè)我們只有少量的、視角有限的圖像,以下哪種重建方法可能面臨較大挑戰(zhàn)?()A.基于立體視覺(jué)的重建方法B.基于運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(StructurefromMotion)的方法C.利用激光掃描數(shù)據(jù)進(jìn)行重建D.基于模型擬合的重建方法13、在計(jì)算機(jī)視覺(jué)中,視頻摘要生成是從長(zhǎng)視頻中提取關(guān)鍵內(nèi)容并生成簡(jiǎn)潔的摘要。以下關(guān)于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關(guān)鍵幀提取、內(nèi)容分析和故事線構(gòu)建等方法B.深度學(xué)習(xí)方法能夠?qū)W習(xí)視頻的語(yǔ)義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲(chǔ)等方面具有實(shí)用價(jià)值D.視頻摘要生成能夠完全準(zhǔn)確地反映視頻的所有重要內(nèi)容,沒(méi)有任何信息丟失14、圖像分割是將圖像細(xì)分為不同的區(qū)域或?qū)ο蟆<僭O(shè)我們需要對(duì)醫(yī)學(xué)圖像中的腫瘤進(jìn)行精確分割,以輔助醫(yī)生進(jìn)行診斷和治療。在這種對(duì)精度要求很高的應(yīng)用中,以下哪種圖像分割方法可能更合適?()A.基于閾值的圖像分割B.基于邊緣檢測(cè)的圖像分割C.基于區(qū)域生長(zhǎng)的圖像分割D.基于深度學(xué)習(xí)的語(yǔ)義分割算法,如U-Net15、計(jì)算機(jī)視覺(jué)中的圖像配準(zhǔn)是將不同時(shí)間、不同視角或不同傳感器獲取的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進(jìn)行配準(zhǔn),以下關(guān)于圖像配準(zhǔn)方法的描述,哪一項(xiàng)是不正確的?()A.基于特征的圖像配準(zhǔn)方法通過(guò)提取圖像中的顯著特征,并進(jìn)行匹配來(lái)實(shí)現(xiàn)配準(zhǔn)B.基于灰度的圖像配準(zhǔn)方法直接比較圖像的灰度值,計(jì)算相似性度量來(lái)完成配準(zhǔn)C.圖像配準(zhǔn)的精度主要取決于特征提取的準(zhǔn)確性和匹配算法的性能D.圖像配準(zhǔn)總是能夠完美地將兩張圖像對(duì)齊,不存在任何誤差16、在一個(gè)基于計(jì)算機(jī)視覺(jué)的機(jī)器人導(dǎo)航系統(tǒng)中,需要根據(jù)環(huán)境圖像來(lái)規(guī)劃?rùn)C(jī)器人的路徑。以下哪種視覺(jué)導(dǎo)航方法可能更適合復(fù)雜動(dòng)態(tài)環(huán)境?()A.基于地圖的導(dǎo)航B.基于視覺(jué)里程計(jì)的導(dǎo)航C.基于深度學(xué)習(xí)的端到端導(dǎo)航D.以上都是17、在計(jì)算機(jī)視覺(jué)的實(shí)際應(yīng)用中,光照變化會(huì)對(duì)圖像的處理和分析產(chǎn)生影響。以下關(guān)于光照變化的描述,不正確的是()A.光照變化可能導(dǎo)致圖像的亮度、對(duì)比度和顏色發(fā)生改變,增加了圖像處理的難度B.一些預(yù)處理技術(shù),如直方圖均衡化,可以在一定程度上減輕光照變化的影響C.深度學(xué)習(xí)模型能夠自動(dòng)適應(yīng)各種光照變化,無(wú)需進(jìn)行額外的處理D.光照變化對(duì)于目標(biāo)檢測(cè)和跟蹤等任務(wù)的準(zhǔn)確性可能會(huì)產(chǎn)生較大的影響18、假設(shè)要開(kāi)發(fā)一個(gè)能夠在低光照條件下清晰拍攝并處理圖像的計(jì)算機(jī)視覺(jué)系統(tǒng),以下哪種圖像增強(qiáng)方法可能有助于改善圖像質(zhì)量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗(yàn)去霧D.以上都是19、當(dāng)進(jìn)行圖像的去霧處理時(shí),假設(shè)要去除圖像中由于霧氣導(dǎo)致的模糊和低對(duì)比度。以下哪種方法可能更有效?()A.基于物理模型的去霧方法,估計(jì)大氣光和透射率B.對(duì)圖像進(jìn)行簡(jiǎn)單的對(duì)比度增強(qiáng)C.不進(jìn)行去霧處理,保留有霧的效果D.隨機(jī)調(diào)整圖像的亮度和飽和度20、視頻分析是計(jì)算機(jī)視覺(jué)的一個(gè)重要領(lǐng)域。假設(shè)我們要分析一段監(jiān)控視頻,以檢測(cè)異常行為,如打架、盜竊等。對(duì)于這種實(shí)時(shí)性要求較高的視頻分析任務(wù),以下哪種方法更適合用于快速處理和檢測(cè)?()A.對(duì)每一幀圖像單獨(dú)進(jìn)行分析B.基于光流的方法跟蹤對(duì)象運(yùn)動(dòng)C.利用深度學(xué)習(xí)模型直接對(duì)視頻進(jìn)行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除21、在計(jì)算機(jī)視覺(jué)的應(yīng)用中,人臉識(shí)別技術(shù)受到廣泛關(guān)注。假設(shè)一個(gè)人臉識(shí)別系統(tǒng)正在進(jìn)行身份驗(yàn)證,以下關(guān)于人臉識(shí)別的描述,正確的是:()A.只依靠面部的幾何形狀信息就能實(shí)現(xiàn)準(zhǔn)確的人臉識(shí)別B.光照變化和面部表情對(duì)人臉識(shí)別的準(zhǔn)確率沒(méi)有影響C.結(jié)合深度學(xué)習(xí)模型和多模態(tài)信息,如紅外圖像,可以提高人臉識(shí)別的性能和可靠性D.人臉識(shí)別系統(tǒng)不需要考慮數(shù)據(jù)的隱私和安全問(wèn)題22、在計(jì)算機(jī)視覺(jué)中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關(guān)于圖像生成的說(shuō)法,錯(cuò)誤的是()A.可以通過(guò)生成對(duì)抗網(wǎng)絡(luò)(GAN)、變分自編碼器(VAE)等模型進(jìn)行圖像生成B.圖像生成可以用于藝術(shù)創(chuàng)作、數(shù)據(jù)增強(qiáng)和虛擬場(chǎng)景構(gòu)建等任務(wù)C.生成的圖像質(zhì)量和真實(shí)性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制23、計(jì)算機(jī)視覺(jué)中的姿態(tài)估計(jì)任務(wù)是估計(jì)人體或物體在三維空間中的姿態(tài)。假設(shè)要估計(jì)一個(gè)人體模特的姿態(tài)。以下關(guān)于姿態(tài)估計(jì)的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)關(guān)鍵點(diǎn)檢測(cè)和關(guān)節(jié)角度計(jì)算來(lái)估計(jì)人體姿態(tài)B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)可以直接預(yù)測(cè)人體姿態(tài)的參數(shù)C.姿態(tài)估計(jì)在虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用中具有重要作用D.姿態(tài)估計(jì)的結(jié)果總是非常準(zhǔn)確,不受人體遮擋和復(fù)雜動(dòng)作的影響24、對(duì)于圖像分類任務(wù),假設(shè)需要對(duì)大量的自然風(fēng)景圖像進(jìn)行分類,包括山脈、森林、海灘和沙漠等場(chǎng)景。這些圖像在光照、拍攝角度和季節(jié)等方面存在較大差異。為了提高圖像分類的準(zhǔn)確性和泛化能力,以下哪種策略是至關(guān)重要的?()A.增加數(shù)據(jù)增強(qiáng)操作,如旋轉(zhuǎn)、翻轉(zhuǎn)和顏色變換B.只使用少量具有代表性的圖像進(jìn)行訓(xùn)練C.選擇簡(jiǎn)單的分類模型,避免過(guò)擬合D.不進(jìn)行任何預(yù)處理,直接使用原始圖像訓(xùn)練模型25、計(jì)算機(jī)視覺(jué)中的視頻目標(biāo)跟蹤中,假設(shè)目標(biāo)在跟蹤過(guò)程中發(fā)生了嚴(yán)重的形變。以下關(guān)于處理目標(biāo)形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應(yīng)地處理目標(biāo)形變,保持跟蹤的準(zhǔn)確性B.特征點(diǎn)跟蹤方法對(duì)目標(biāo)形變不敏感,在這種情況下仍然能夠可靠跟蹤C(jī).深度學(xué)習(xí)中的孿生網(wǎng)絡(luò)在目標(biāo)形變時(shí)容易丟失目標(biāo),無(wú)法繼續(xù)跟蹤D.結(jié)合多種特征和模型更新策略可以提高對(duì)目標(biāo)形變的跟蹤魯棒性26、計(jì)算機(jī)視覺(jué)中的手勢(shì)識(shí)別用于理解人的手勢(shì)動(dòng)作。假設(shè)要在一個(gè)智能交互系統(tǒng)中實(shí)現(xiàn)實(shí)時(shí)準(zhǔn)確的手勢(shì)識(shí)別,以下關(guān)于手勢(shì)識(shí)別方法的描述,正確的是:()A.基于傳感器的手勢(shì)識(shí)別方法能夠精確獲取手勢(shì)的運(yùn)動(dòng)信息,但佩戴傳感器不方便B.基于視覺(jué)的手勢(shì)識(shí)別方法不受環(huán)境光照和背景的影響,識(shí)別穩(wěn)定性高C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在手勢(shì)識(shí)別中無(wú)法處理復(fù)雜的手勢(shì)變化和遮擋D.手勢(shì)識(shí)別系統(tǒng)只要能夠識(shí)別常見(jiàn)的幾種手勢(shì),就能夠滿足大多數(shù)應(yīng)用需求27、圖像分類是計(jì)算機(jī)視覺(jué)的基礎(chǔ)任務(wù)之一。假設(shè)要對(duì)大量的自然風(fēng)景圖片進(jìn)行分類,包括山脈、森林、海灘等不同類型,同時(shí)圖片可能存在不同的拍攝角度、光照條件和季節(jié)變化。為了能夠準(zhǔn)確地對(duì)這些圖片進(jìn)行分類,以下哪種特征提取方法與分類算法的組合最為有效?()A.SIFT特征+支持向量機(jī)B.HOG特征+決策樹(shù)C.卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)提取特征+深度學(xué)習(xí)分類器D.顏色直方圖特征+樸素貝葉斯28、物體檢測(cè)是計(jì)算機(jī)視覺(jué)中的一項(xiàng)關(guān)鍵任務(wù)。假設(shè)一個(gè)智能監(jiān)控系統(tǒng)需要檢測(cè)場(chǎng)景中的特定物體,如背包、自行車(chē)等。以下關(guān)于物體檢測(cè)算法的描述,哪一項(xiàng)是不正確的?()A.基于深度學(xué)習(xí)的物體檢測(cè)算法能夠同時(shí)檢測(cè)多個(gè)物體,并給出它們的位置和類別B.可以通過(guò)滑動(dòng)窗口的方法在圖像中搜索可能的物體區(qū)域,然后進(jìn)行分類判斷C.物體檢測(cè)算法需要對(duì)大量的標(biāo)注圖像進(jìn)行訓(xùn)練,以學(xué)習(xí)不同物體的特征D.無(wú)論物體的大小、形狀和顏色如何變化,物體檢測(cè)算法都能準(zhǔn)確檢測(cè)到29、計(jì)算機(jī)視覺(jué)中的場(chǎng)景理解是理解圖像或視頻中的場(chǎng)景內(nèi)容和語(yǔ)義信息。假設(shè)要理解一張城市街道的圖像,以下關(guān)于場(chǎng)景理解方法的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)對(duì)象檢測(cè)、語(yǔ)義分割和場(chǎng)景分類等任務(wù)來(lái)實(shí)現(xiàn)場(chǎng)景理解B.結(jié)合上下文信息和先驗(yàn)知識(shí)能夠提高場(chǎng)景理解的準(zhǔn)確性C.深度學(xué)習(xí)模型能夠?qū)W習(xí)場(chǎng)景中的全局特征和關(guān)系,實(shí)現(xiàn)對(duì)場(chǎng)景的深入理解D.場(chǎng)景理解可以在沒(méi)有任何先驗(yàn)知識(shí)和上下文信息的情況下,準(zhǔn)確地推斷出場(chǎng)景的語(yǔ)義30、計(jì)算機(jī)視覺(jué)中的視頻理解不僅包括對(duì)單個(gè)幀的分析,還需要考慮幀之間的關(guān)系。假設(shè)我們要理解一個(gè)電影片段的情節(jié)和情感,以下哪種方法能夠有效地捕捉視頻中的時(shí)空動(dòng)態(tài)信息和語(yǔ)義信息?()A.基于幀級(jí)特征和分類器的方法B.基于深度學(xué)習(xí)的視頻理解模型,結(jié)合注意力機(jī)制C.基于光流和運(yùn)動(dòng)軌跡的方法D.基于音頻和視頻融合的方法二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)利用圖像識(shí)別技術(shù),對(duì)不同品牌的電腦顯示器圖像進(jìn)行識(shí)別和分類。2、(本題5分)利用圖像識(shí)別算法,對(duì)超市貨架上的商品進(jìn)行庫(kù)存管理和盤(pán)點(diǎn)。3、(本題5分)運(yùn)用圖像識(shí)別算法,對(duì)不同樂(lè)器的圖像進(jìn)行分類和識(shí)別。4、(本題5分)設(shè)計(jì)一個(gè)基于計(jì)算機(jī)視覺(jué)的交通標(biāo)志識(shí)別系統(tǒng)。5、(本題5分)運(yùn)用深度學(xué)習(xí),對(duì)不同種
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)學(xué)院發(fā)展黨員資料袋
- 河南省漯河市本年度(2025)小學(xué)一年級(jí)數(shù)學(xué)統(tǒng)編版專題練習(xí)(下學(xué)期)試卷及答案
- 2025-2030年中國(guó)數(shù)字告示數(shù)字標(biāo)牌行業(yè)應(yīng)用前景及投資發(fā)展研究報(bào)告
- 朱自清背影閱讀教學(xué)設(shè)計(jì)
- 觀潮教案八年級(jí)上
- 一級(jí)建筑實(shí)務(wù)模擬習(xí)題(附答案)
- 新能源汽車(chē)故障診斷與排除模擬練習(xí)題+答案
- 保健按摩師初級(jí)模擬練習(xí)題(含參考答案)
- 山西省長(zhǎng)治市潞州區(qū)長(zhǎng)治市第二中學(xué)2025屆高三最后一卷英語(yǔ)試卷含答案
- 2025年安徽省阜陽(yáng)市太和縣中考二模化學(xué)試題(原卷版+解析版)
- GB/T 21220-2024軟磁金屬材料
- 房屋維修工程施工方案及質(zhì)量工期保障措施
- 經(jīng)導(dǎo)管主動(dòng)脈瓣置換術(shù)(TAVR)患者的麻醉管理
- 材料腐蝕與防護(hù)智慧樹(shù)知到期末考試答案章節(jié)答案2024年山東建筑大學(xué)
- 年產(chǎn)15萬(wàn)噸煤制甲醇生產(chǎn)的工藝設(shè)計(jì)0
- 河南省鄭州市2023-2024學(xué)年高二下學(xué)期6月期末英語(yǔ)試題(解析版)
- 國(guó)家開(kāi)放大學(xué)專科《法理學(xué)》(第三版教材)形成性考核試題及答案
- 2023年小型水庫(kù)雨水情測(cè)報(bào)和大壩安全監(jiān)測(cè)設(shè)施項(xiàng)目-實(shí)施方案
- 橋梁博士畢業(yè)設(shè)計(jì)電子版
- MOOC 犯罪心理學(xué)-西南政法大學(xué) 中國(guó)大學(xué)慕課答案
- (2024年)面神經(jīng)炎課件完整版
評(píng)論
0/150
提交評(píng)論