




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆天津市重點(diǎn)名校高三下學(xué)期一模考試數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線(xiàn)的焦點(diǎn)為F,點(diǎn)為該拋物線(xiàn)上的動(dòng)點(diǎn),若點(diǎn),則的最小值為()A. B. C. D.2.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級(jí)政府相繼啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),全國(guó)人心抗擊疫情.下圖表示月日至月日我國(guó)新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是()A.月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì)B.隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過(guò)確診人數(shù)C.月日至月日新增確診人數(shù)波動(dòng)最大D.我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)在月日左右達(dá)到峰值3.已知曲線(xiàn)且過(guò)定點(diǎn),若且,則的最小值為().A. B.9 C.5 D.4.甲在微信群中發(fā)了一個(gè)6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢(qián)數(shù)多于其他任何人)的概率是()A. B. C. D.5.雙曲線(xiàn)C:(,)的離心率是3,焦點(diǎn)到漸近線(xiàn)的距離為,則雙曲線(xiàn)C的焦距為()A.3 B. C.6 D.6.函數(shù)的最小正周期是,則其圖象向左平移個(gè)單位長(zhǎng)度后得到的函數(shù)的一條對(duì)稱(chēng)軸是()A. B. C. D.7.是邊長(zhǎng)為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.8.若為純虛數(shù),則z=()A. B.6i C. D.209.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A.7 B.14 C.28 D.8410.如圖,在△ABC中,點(diǎn)M是邊BC的中點(diǎn),將△ABM沿著AM翻折成△AB'M,且點(diǎn)B'不在平面AMC內(nèi),點(diǎn)P是線(xiàn)段B'C上一點(diǎn).若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線(xiàn)AP經(jīng)過(guò)△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心11.一個(gè)正方體被一個(gè)平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.12.如圖在一個(gè)的二面角的棱有兩個(gè)點(diǎn),線(xiàn)段分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于棱,且,則的長(zhǎng)為()A.4 B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿(mǎn)足約束條件則的最大值為_(kāi)_________.14.如果橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在x軸上,且=,那么橢圓的方程是.15.曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為_(kāi)_______.16.已知函數(shù)為奇函數(shù),,且與圖象的交點(diǎn)為,,…,,則______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖在棱錐中,為矩形,面,(1)在上是否存在一點(diǎn),使面,若存在確定點(diǎn)位置,若不存在,請(qǐng)說(shuō)明理由;(2)當(dāng)為中點(diǎn)時(shí),求二面角的余弦值.18.(12分)已知數(shù)列滿(mǎn)足:對(duì)一切成立.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過(guò)兩點(diǎn),的直線(xiàn)的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過(guò),兩點(diǎn),求橢圓的方程.20.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;(2)已知,若,,,求的面積.21.(12分)在平面直角坐標(biāo)系中,已知直線(xiàn)的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.(1)求和的極坐標(biāo)方程;(2)過(guò)且傾斜角為的直線(xiàn)與交于點(diǎn),與交于另一點(diǎn),若,求的取值范圍.22.(10分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
通過(guò)拋物線(xiàn)的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線(xiàn)方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線(xiàn)的準(zhǔn)線(xiàn)方程為,,過(guò)作垂直直線(xiàn)于,由拋物線(xiàn)的定義可知,連結(jié),當(dāng)是拋物線(xiàn)的切線(xiàn)時(shí),有最小值,則最大,即最大,就是直線(xiàn)的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點(diǎn)睛】本題考查拋物線(xiàn)的基本性質(zhì),直線(xiàn)與拋物線(xiàn)的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.2、D【解析】
根據(jù)新增確診曲線(xiàn)的走勢(shì)可判斷A選項(xiàng)的正誤;根據(jù)新增確診曲線(xiàn)與新增治愈曲線(xiàn)的位置關(guān)系可判斷B選項(xiàng)的正誤;根據(jù)月日至月日新增確診曲線(xiàn)的走勢(shì)可判斷C選項(xiàng)的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】對(duì)于A選項(xiàng),由圖象可知,月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì),A選項(xiàng)正確;對(duì)于B選項(xiàng),由圖象可知,隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過(guò)確診人數(shù),B選項(xiàng)正確;對(duì)于C選項(xiàng),由圖象可知,月日至月日新增確診人數(shù)波動(dòng)最大,C選項(xiàng)正確;對(duì)于D選項(xiàng),在月日及以前,我國(guó)新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)不在月日左右達(dá)到峰值,D選項(xiàng)錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.3、A【解析】
根據(jù)指數(shù)型函數(shù)所過(guò)的定點(diǎn),確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點(diǎn)為,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即時(shí)取得最小值.故選:A【點(diǎn)睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計(jì)算能力,屬于基礎(chǔ)題型.4、B【解析】
將所有可能的情況全部枚舉出來(lái),再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個(gè),其中符合乙獲得“最佳手氣”的有3個(gè),故所求概率為,故選:B.【點(diǎn)睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.5、A【解析】
根據(jù)焦點(diǎn)到漸近線(xiàn)的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線(xiàn)的漸近線(xiàn)方程為取右焦點(diǎn),一條漸近線(xiàn)則點(diǎn)到的距離為,由所以,則又所以所以焦距為:故選:A【點(diǎn)睛】本題考查雙曲線(xiàn)漸近線(xiàn)方程,以及之間的關(guān)系,識(shí)記常用的結(jié)論:焦點(diǎn)到漸近線(xiàn)的距離為,屬基礎(chǔ)題.6、D【解析】
由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對(duì)稱(chēng)軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過(guò)平移后得到函數(shù)解析式為,由,得,當(dāng)時(shí),.故選D.【點(diǎn)睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.7、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過(guò)圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過(guò)作的垂線(xiàn)交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切危ⅰ⒎謩e為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問(wèn)題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.8、C【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時(shí)故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念與運(yùn)算,屬基礎(chǔ)題.9、D【解析】
利用等差數(shù)列的通項(xiàng)公式,可求解得到,利用求和公式和等差中項(xiàng)的性質(zhì),即得解【詳解】,解得..故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、求和公式和等差中項(xiàng),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.10、A【解析】
根據(jù)題意P到兩個(gè)平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個(gè)平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點(diǎn).故選:A.【點(diǎn)睛】本題考查了二面角,等體積法,意在考查學(xué)生的計(jì)算能力和空間想象能力.11、D【解析】
試題分析:如圖所示,截去部分是正方體的一個(gè)角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點(diǎn):本題主要考查三視圖及幾何體體積的計(jì)算.12、A【解析】
由,兩邊平方后展開(kāi)整理,即可求得,則的長(zhǎng)可求.【詳解】解:,,,,,,.,,故選:.【點(diǎn)睛】本題考查了向量的多邊形法則、數(shù)量積的運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
先畫(huà)出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點(diǎn),代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線(xiàn)過(guò)點(diǎn)時(shí),取得最大值為:.故答案為:1.【點(diǎn)睛】本題考查線(xiàn)性規(guī)劃求最值問(wèn)題,我們常用幾何法求最值.14、【解析】
由題意可設(shè)橢圓方程為:∵短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在軸上∴又,∴,∴橢圓的方程為,故答案為.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,解三角形以及解方程組的相關(guān)知識(shí).15、【解析】
求導(dǎo),得到和,利用點(diǎn)斜式即可求得結(jié)果.【詳解】由于,,所以,由點(diǎn)斜式可得切線(xiàn)方程為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線(xiàn)方程,屬基礎(chǔ)題.16、18【解析】
由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點(diǎn)對(duì)稱(chēng),結(jié)合函數(shù)的對(duì)稱(chēng)性進(jìn)行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點(diǎn)對(duì)稱(chēng),,函數(shù)關(guān)于點(diǎn)對(duì)稱(chēng),所以?xún)蓚€(gè)函數(shù)圖象的交點(diǎn)也關(guān)于點(diǎn)(1,2)對(duì)稱(chēng),與圖像的交點(diǎn)為,,…,,兩兩關(guān)于點(diǎn)對(duì)稱(chēng),.故答案為:18【點(diǎn)睛】本題考查了函數(shù)對(duì)稱(chēng)性的應(yīng)用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對(duì)稱(chēng)性是解決本題的關(guān)鍵,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】
(1)要證明PC⊥面ADE,由已知可得AD⊥PC,只需滿(mǎn)足即可,從而得到點(diǎn)E為中點(diǎn);(2)求出面ADE的法向量,面PAE的法向量,利用空間向量的數(shù)量積,求解二面角P﹣AE﹣D的余弦值.【詳解】(1)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由,即存在點(diǎn)E為PC中點(diǎn).法二:建立如圖所示的空間直角坐標(biāo)系D-XYZ,由題意知PD=CD=1,,設(shè),,,由,得,即存在點(diǎn)E為PC中點(diǎn).(2)由(1)知,,,,,,設(shè)面ADE的法向量為,面PAE的法向量為由的法向量為得,得,同理求得所以,故所求二面角P-AE-D的余弦值為.【點(diǎn)睛】本題考查二面角的平面角的求法,考查直線(xiàn)與平面垂直的判定定理的應(yīng)用,考查空間想象能力以及計(jì)算能力.18、(1);(2)【解析】
(1)先通過(guò)求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過(guò)裂項(xiàng)求和法可得答案.【詳解】(1)①,當(dāng)時(shí),,,當(dāng)時(shí),②,①②得:,,適合,故;(2),.【點(diǎn)睛】本題考查法求數(shù)列的通項(xiàng)公式,考查裂項(xiàng)求和,是基礎(chǔ)題.19、(Ⅰ);(Ⅱ).【解析】試題分析:(1)依題意,由點(diǎn)到直線(xiàn)的距離公式可得,又有,聯(lián)立可求離心率;(2)由(1)設(shè)橢圓方程,再設(shè)直線(xiàn)方程,與橢圓方程聯(lián)立,求得,令,可得,即得橢圓方程.試題解析:(Ⅰ)過(guò)點(diǎn)的直線(xiàn)方程為,則原點(diǎn)到直線(xiàn)的距離,由,得,解得離心率.(Ⅱ)由(1)知,橢圓的方程為.依題意,圓心是線(xiàn)段的中點(diǎn),且.易知,不與軸垂直.設(shè)其直線(xiàn)方程為,代入(1)得.設(shè),則,.由,得,解得.從而.于是.由,得,解得.故橢圓的方程為.20、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2).【解析】
(1)利用三角恒等變換思想化簡(jiǎn)函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結(jié)合余弦定理解三角形,進(jìn)行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數(shù)的最小正周期為,由得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當(dāng)時(shí),即,則由,,得,則,此時(shí),的面積為;②當(dāng)時(shí),則,即,則由,解得,,.綜上,的面積為.【點(diǎn)睛】本題考查正弦型函數(shù)的周期和單調(diào)區(qū)間的求解,同時(shí)也考查了三角形面積的計(jì)算,涉及余弦定理解三角形的應(yīng)用,考查計(jì)算能力,屬于中等題.21、(1);(2)【解析】
(1)直接利用轉(zhuǎn)換公式,把參數(shù)方程,直角坐標(biāo)方程與極坐標(biāo)方程進(jìn)行轉(zhuǎn)化;(2)利用極坐標(biāo)方程將轉(zhuǎn)化為三角函數(shù)求解即可.【詳解】(1)因?yàn)椋缘钠胀ǚ匠虨椋郑臉O坐標(biāo)方程為,的方程即為,對(duì)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 自體免疫性疾病研究體系
- 急診創(chuàng)傷病人麻醉處理要點(diǎn)
- 2025年新高考數(shù)學(xué)一輪復(fù)習(xí)講義:第九章統(tǒng)計(jì)與成對(duì)數(shù)據(jù)的統(tǒng)計(jì)分析(學(xué)生版)
- 2025年音樂(lè)版權(quán)運(yùn)營(yíng)案例分析:流媒體平臺(tái)用戶(hù)付費(fèi)策略深度研究報(bào)告
- 基于2025年標(biāo)準(zhǔn)的學(xué)校體育館建設(shè)初步設(shè)計(jì)抗震性能評(píng)估報(bào)告
- 房地產(chǎn)企業(yè)2025年財(cái)務(wù)風(fēng)險(xiǎn)管理策略與穩(wěn)健經(jīng)營(yíng)路徑研究?jī)?yōu)化優(yōu)化優(yōu)化優(yōu)化報(bào)告
- 2025年森林生態(tài)系統(tǒng)服務(wù)功能評(píng)估在生態(tài)修復(fù)中的應(yīng)用報(bào)告
- 2025年能源互聯(lián)網(wǎng)背景下分布式能源交易策略研究報(bào)告
- 一番的意思4篇
- 書(shū)法培訓(xùn)班教學(xué)管理制度
- 高層建筑防火涂料施工標(biāo)準(zhǔn)方案
- 2024年重慶市初中學(xué)業(yè)水平考試生物試卷含答案
- 胎盤(pán)滯留病因介紹
- 機(jī)械類(lèi)中職學(xué)業(yè)水平考試專(zhuān)業(yè)綜合理論考試題庫(kù)(含答案)
- 無(wú)人機(jī)在坦克戰(zhàn)中的火力支援研究-洞察分析
- 四川省樹(shù)德中學(xué)2025屆高三下學(xué)期一模考試數(shù)學(xué)試題含解析
- 王陽(yáng)明讀書(shū)分享
- 醫(yī)院規(guī)范腫瘤化療制度
- 2024年銀行考試-銀行間本幣市場(chǎng)交易員資格考試近5年真題集錦(頻考類(lèi)試題)帶答案
- 審計(jì)應(yīng)知應(yīng)會(huì)知識(shí)題庫(kù)及答案(共341題)
- PC工法樁專(zhuān)項(xiàng)施工方案-
評(píng)論
0/150
提交評(píng)論