湖北工程學(xué)院《展示設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
湖北工程學(xué)院《展示設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
湖北工程學(xué)院《展示設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
湖北工程學(xué)院《展示設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
湖北工程學(xué)院《展示設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁湖北工程學(xué)院《展示設(shè)計》

2022-2023學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的場景理解任務(wù)中,需要理解整個圖像的語義信息。假設(shè)要分析一張城市街道的圖像中包含的物體和它們之間的關(guān)系,以下關(guān)于場景理解方法的描述,正確的是:()A.單獨對圖像中的每個物體進行識別和分類就能實現(xiàn)場景理解B.忽略圖像中的上下文信息和空間布局對場景理解沒有影響C.利用深度學(xué)習(xí)中的語義分割和圖模型可以更好地理解場景的結(jié)構(gòu)和語義關(guān)系D.場景理解只適用于簡單的室內(nèi)場景,對于復(fù)雜的戶外場景無法處理2、在計算機視覺的姿態(tài)估計任務(wù)中,需要確定物體在三維空間中的方向和位置。假設(shè)我們要估計一個機器人手臂的姿態(tài),以下哪種技術(shù)通常被用于獲取準(zhǔn)確的姿態(tài)信息?()A.基于視覺標(biāo)記的姿態(tài)估計B.基于深度學(xué)習(xí)的姿態(tài)估計C.基于幾何約束的姿態(tài)估計D.基于慣性測量單元(IMU)的姿態(tài)估計3、計算機視覺中的人臉檢測和識別是熱門研究方向。假設(shè)要在一個大規(guī)模的人臉數(shù)據(jù)庫中進行快速準(zhǔn)確的人臉識別,以下哪種特征提取方法可能更具優(yōu)勢?()A.基于幾何特征的方法B.基于局部二值模式(LBP)的方法C.基于深度學(xué)習(xí)的方法D.基于主成分分析(PCA)的方法4、計算機視覺中的場景文本識別旨在從圖像中識別出文字信息。假設(shè)要在一張街景圖像中識別出店鋪招牌上的文字。以下關(guān)于場景文本識別方法的描述,正確的是:()A.基于光學(xué)字符識別(OCR)技術(shù)的方法對字體和排版的變化適應(yīng)性強,識別準(zhǔn)確率高B.深度學(xué)習(xí)中的端到端文本識別模型能夠處理彎曲和變形的文本,但對模糊文本效果不佳C.場景文本識別只需要關(guān)注文本的內(nèi)容,不需要考慮文本的位置和上下文信息D.所有的場景文本識別方法都能夠在復(fù)雜的自然場景中準(zhǔn)確無誤地識別出各種文字5、在計算機視覺的三維重建任務(wù)中,需要從多視角的圖像中恢復(fù)物體的三維形狀。假設(shè)我們有一組從不同角度拍攝的建筑物圖像,以下哪種方法常用于從這些圖像中重建建筑物的三維模型?()A.立體匹配方法B.結(jié)構(gòu)光方法C.運動恢復(fù)結(jié)構(gòu)(SFM)D.基于投影的方法6、當(dāng)利用計算機視覺進行視頻監(jiān)控中的異常行為檢測,例如打架、盜竊等,以下哪種方法可能有助于準(zhǔn)確識別異常行為?()A.建立正常行為模型B.運動軌跡分析C.人群密度估計D.以上都是7、在計算機視覺的圖像融合任務(wù)中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設(shè)要將一張白天拍攝的風(fēng)景圖像和一張夜晚拍攝的同一地點的圖像進行融合,以下關(guān)于圖像融合方法的描述,哪一項是不正確的?()A.可以基于像素級的融合策略,將兩幅圖像的像素值進行加權(quán)或組合B.特征級融合方法先提取圖像的特征,然后進行融合,能夠更好地保留圖像的語義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質(zhì)量和內(nèi)容無關(guān)D.多模態(tài)圖像融合需要考慮不同圖像的特點和互補性,以獲得更理想的融合結(jié)果8、當(dāng)進行圖像的光流估計時,假設(shè)要計算圖像中像素的運動速度和方向。以下哪種光流估計算法在復(fù)雜場景下可能更準(zhǔn)確?()A.Horn-Schunck算法B.Lucas-Kanade算法C.隨機估計光流D.不進行光流估計,忽略像素的運動信息9、在計算機視覺的圖像增強處理中,目的是改善圖像的質(zhì)量和可讀性。假設(shè)我們要對一張低光照條件下拍攝的圖像進行增強,以下關(guān)于圖像增強方法的描述,哪一項是不正確的?()A.直方圖均衡化可以通過調(diào)整圖像的灰度分布,增強圖像的對比度B.基于Retinex理論的方法可以分離圖像的光照和反射成分,從而改善圖像的視覺效果C.圖像增強算法可以在不增加噪聲的情況下,顯著提高圖像的亮度和清晰度D.不同的圖像增強方法適用于不同類型的圖像,需要根據(jù)具體情況選擇合適的方法10、在計算機視覺的三維重建任務(wù)中,我們需要從多幅二維圖像中恢復(fù)物體的三維結(jié)構(gòu)。假設(shè)我們只有少量的、視角有限的圖像,以下哪種重建方法可能面臨較大挑戰(zhàn)?()A.基于立體視覺的重建方法B.基于運動恢復(fù)結(jié)構(gòu)(StructurefromMotion)的方法C.利用激光掃描數(shù)據(jù)進行重建D.基于模型擬合的重建方法11、計算機視覺中的表情識別用于分析人臉的表情狀態(tài)。假設(shè)要在一個在線教育平臺中檢測學(xué)生的學(xué)習(xí)狀態(tài)。以下關(guān)于表情識別的描述,哪一項是不正確的?()A.可以通過提取面部肌肉的運動特征來判斷表情B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)表情的特征表示C.表情識別能夠準(zhǔn)確區(qū)分細微的表情變化,如困惑和專注D.表情識別不受面部遮擋和光照變化的影響,始終能夠準(zhǔn)確判斷12、計算機視覺在醫(yī)學(xué)影像分析中的應(yīng)用有助于輔助醫(yī)生進行診斷和治療。假設(shè)要分析一張腦部CT圖像,以下關(guān)于醫(yī)學(xué)影像分析中的計算機視覺應(yīng)用的描述,哪一項是不正確的?()A.可以通過分割腦組織、檢測病變區(qū)域等方法,為醫(yī)生提供定量的分析結(jié)果B.深度學(xué)習(xí)模型能夠自動學(xué)習(xí)醫(yī)學(xué)影像中的特征,輔助醫(yī)生發(fā)現(xiàn)潛在的疾病C.計算機視覺在醫(yī)學(xué)影像分析中的應(yīng)用需要遵循嚴格的醫(yī)學(xué)倫理和法規(guī)D.計算機視覺系統(tǒng)可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進一步審查和判斷13、計算機視覺在衛(wèi)星遙感圖像分析中的應(yīng)用可以幫助監(jiān)測地球環(huán)境和資源。假設(shè)要通過衛(wèi)星圖像分析森林的覆蓋面積變化。以下關(guān)于計算機視覺在衛(wèi)星遙感中的描述,哪一項是不準(zhǔn)確的?()A.可以通過圖像分類和分割技術(shù)區(qū)分森林、草地和建筑物等不同地物類型B.能夠?qū)Χ鄷r相的衛(wèi)星圖像進行比較,監(jiān)測森林的生長和砍伐情況C.計算機視覺在衛(wèi)星遙感中的應(yīng)用不受衛(wèi)星圖像的分辨率和光譜信息的限制D.可以結(jié)合地理信息系統(tǒng)(GIS)數(shù)據(jù),進行更深入的空間分析和決策支持14、在計算機視覺的醫(yī)學(xué)圖像分析中,輔助醫(yī)生進行疾病診斷。假設(shè)要通過分析CT圖像檢測腫瘤的位置和大小,以下關(guān)于醫(yī)學(xué)圖像計算機視覺應(yīng)用的描述,正確的是:()A.計算機視覺算法可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進一步判斷B.不同患者的個體差異和掃描參數(shù)的變化對腫瘤檢測結(jié)果沒有影響C.結(jié)合醫(yī)生的先驗知識和計算機視覺技術(shù)能夠提高腫瘤檢測的準(zhǔn)確性和可靠性D.醫(yī)學(xué)圖像中的噪聲和偽影對計算機視覺算法的性能沒有影響15、計算機視覺中的場景理解是一項具有挑戰(zhàn)性的任務(wù)。假設(shè)要理解一個城市街道的場景圖像,包括道路、建筑物、車輛和行人等元素。以下關(guān)于場景理解方法的描述,正確的是:()A.基于語義分割的方法能夠?qū)D像中的每個像素分類為不同的場景元素,但無法提供元素之間的關(guān)系B.目標(biāo)檢測結(jié)合語義分割可以實現(xiàn)對場景的初步理解,但對于復(fù)雜的場景結(jié)構(gòu)難以準(zhǔn)確描述C.基于圖模型的方法能夠很好地表示場景元素之間的關(guān)系,但建模過程復(fù)雜,計算量大D.場景理解只需要對圖像中的可見元素進行分析,不需要考慮潛在的語義信息16、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設(shè)要估計一段視頻中物體的運動速度和方向,以下關(guān)于光流估計方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計方法在復(fù)雜場景中能夠準(zhǔn)確計算光流B.深度學(xué)習(xí)中的光流估計網(wǎng)絡(luò)不需要大量的標(biāo)注數(shù)據(jù)進行訓(xùn)練C.光流估計的結(jié)果不受圖像噪聲和模糊的影響D.結(jié)合時空信息的深度學(xué)習(xí)光流估計方法能夠提高估計的準(zhǔn)確性和魯棒性17、當(dāng)處理低光照條件下拍攝的圖像時,為了增強圖像的亮度和對比度,同時減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡單地增加圖像的整體亮度值D.不進行任何處理,保留低光照效果18、在計算機視覺的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要處理一張被噪聲嚴重污染的天文圖像,以下關(guān)于圖像去噪方法的描述,哪一項是不正確的?()A.均值濾波和中值濾波等傳統(tǒng)方法可以在一定程度上去除噪聲,但可能會模糊圖像細節(jié)B.基于小波變換的方法能夠在去除噪聲的同時較好地保留圖像的邊緣和細節(jié)C.深度學(xué)習(xí)方法通過學(xué)習(xí)噪聲和干凈圖像之間的映射關(guān)系,實現(xiàn)有效的去噪D.圖像去噪可以完全恢復(fù)被噪聲破壞的原始圖像信息,沒有任何損失19、計算機視覺中的車牌識別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個高速公路收費站實現(xiàn)準(zhǔn)確的車牌識別,以下關(guān)于車牌識別方法的描述,正確的是:()A.基于邊緣檢測和字符分割的方法對車牌的變形和污漬具有很強的適應(yīng)性B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車牌圖像中識別出字符,但對車牌的傾斜和光照不均敏感C.車牌識別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運行D.車牌識別的準(zhǔn)確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關(guān)20、計算機視覺在無人駕駛中的應(yīng)用需要應(yīng)對各種復(fù)雜的環(huán)境和情況。假設(shè)無人駕駛汽車要在惡劣天氣下行駛,以下關(guān)于計算機視覺在無人駕駛中的挑戰(zhàn)的描述,哪一項是不正確的?()A.惡劣天氣會影響圖像的質(zhì)量和清晰度,增加目標(biāo)檢測和識別的難度B.計算機視覺系統(tǒng)需要與其他傳感器(如雷達和超聲波傳感器)融合,以提高在惡劣天氣下的感知能力C.深度學(xué)習(xí)模型在惡劣天氣條件下的性能會顯著下降,無法正常工作D.針對惡劣天氣,可以通過數(shù)據(jù)增強和模型優(yōu)化等方法提高計算機視覺系統(tǒng)的魯棒性21、當(dāng)利用計算機視覺進行圖像超分辨率重建任務(wù),將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種深度學(xué)習(xí)模型可能在重建效果上表現(xiàn)出色?()A.SRCNNB.ESPCNC.DRCND.以上都是22、計算機視覺中的視覺注意力機制用于聚焦圖像中的重要區(qū)域。以下關(guān)于視覺注意力機制的說法,不正確的是()A.視覺注意力機制可以根據(jù)圖像的特征和任務(wù)需求動態(tài)地選擇關(guān)注的區(qū)域B.注意力機制能夠提高模型的效率和性能,減少對無關(guān)信息的處理C.視覺注意力機制在圖像分類、目標(biāo)檢測和圖像生成等任務(wù)中得到了廣泛應(yīng)用D.視覺注意力機制的引入會增加模型的復(fù)雜度和計算量,降低模型的訓(xùn)練速度23、假設(shè)要開發(fā)一個能夠在低光照條件下清晰拍攝并處理圖像的計算機視覺系統(tǒng),以下哪種圖像增強方法可能有助于改善圖像質(zhì)量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗去霧D.以上都是24、計算機視覺中的語義分割任務(wù)旨在為圖像中的每個像素分配一個類別標(biāo)簽。假設(shè)要對醫(yī)學(xué)圖像中的病變區(qū)域進行精確分割,以下哪種技術(shù)可能對提高分割精度有較大幫助?()A.使用更深的卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)B.引入多尺度特征融合C.增加訓(xùn)練數(shù)據(jù)中的噪聲D.減少網(wǎng)絡(luò)中的參數(shù)數(shù)量25、計算機視覺在自動駕駛領(lǐng)域有著至關(guān)重要的應(yīng)用。假設(shè)一輛自動駕駛汽車正在道路上行駛,需要識別各種交通標(biāo)志和障礙物。以下關(guān)于自動駕駛中計算機視覺任務(wù)的描述,正確的是:()A.只需對前方物體進行簡單的圖像分類,就能實現(xiàn)安全的自動駕駛B.準(zhǔn)確的目標(biāo)檢測和語義分割對于理解復(fù)雜的道路場景至關(guān)重要C.計算機視覺在自動駕駛中作用不大,主要依靠其他傳感器如雷達D.對于交通標(biāo)志的識別,顏色信息比形狀和圖案信息更重要二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在土壤質(zhì)量監(jiān)測中的應(yīng)用。2、(本題5分)簡述計算機視覺在農(nóng)業(yè)中的作物監(jiān)測和病蟲害檢測。3、(本題5分)說明計算機視覺在畜牧業(yè)中的動物行為分析。4、(本題5分)描述計算機視覺在礦產(chǎn)資源勘探中的應(yīng)用。三、分析題(本大題共5個小題,共25分)1、(本題5分)研究某品牌的名片設(shè)計風(fēng)格,分析其如何通過獨特的設(shè)計風(fēng)格和元素,傳達個人或企業(yè)的形象和專業(yè)度。2、(本題5分)分析蘋果電腦的游戲性能廣告設(shè)計,從游戲畫面展示、流暢度到品牌形象傳達。探討其如何吸引游戲玩家購買蘋果電腦。3、(本題5分)某兒童樂園的標(biāo)識系統(tǒng)設(shè)計色彩鮮艷,形象可愛。請?zhí)接憳?biāo)識系統(tǒng)設(shè)計在引導(dǎo)兒童游玩、保障兒童安全、營造歡樂氛圍方面的策略,以及如何根據(jù)樂園的布局和設(shè)施進行合理設(shè)計。4、(本題5分)某汽車品牌的售后服務(wù)手冊設(shè)計清晰易懂

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論