




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第05講對數(shù)與對數(shù)函數(shù)(模擬精練+真題演練)1.(2023·上海金山·上海市金山中學(xué)校考模擬預(yù)測)“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【解析】SKIPIF1<0的解集是SKIPIF1<0,反之不成立.所以“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件.故選:B2.(2023·安徽·校聯(lián)考模擬預(yù)測)19世紀(jì)美國天文學(xué)家西蒙·紐康在翻閱對數(shù)表時,偶然發(fā)現(xiàn)表中以1開頭的數(shù)出現(xiàn)的頻率更高.約半個世紀(jì)后,物理學(xué)家本·福特又重新發(fā)現(xiàn)這個現(xiàn)象,從實(shí)際生活得出的大量數(shù)據(jù)中,以1開頭的數(shù)出現(xiàn)的頻數(shù)約為總數(shù)的三成,并提出本·福特定律,即在大量SKIPIF1<0進(jìn)制隨機(jī)數(shù)據(jù)中,以SKIPIF1<0開頭的數(shù)出現(xiàn)的概率為SKIPIF1<0,如斐波那契數(shù)、階乘數(shù)、素數(shù)等都比較符合該定律.后來常有數(shù)學(xué)愛好者用此定律來檢驗(yàn)?zāi)承┙?jīng)濟(jì)數(shù)據(jù)、選舉數(shù)據(jù)等大數(shù)據(jù)的真實(shí)性.若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0的值為(SKIPIF1<0)A.2 B.3 C.4 D.5【答案】B【解析】依題意,得SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0.故選:B.3.(2023·河南·校聯(lián)考模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,有以下命題:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中正確命題的序號是(
)A.②③ B.①③ C.①④ D.②④【答案】B【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即:SKIPIF1<0所以SKIPIF1<0,故①正確,②錯誤;又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即:SKIPIF1<0,所以SKIPIF1<0,故③正確,④錯誤.故選:B.4.(2023·河北石家莊·統(tǒng)考三模)18世紀(jì)數(shù)學(xué)家歐拉研究調(diào)和級數(shù)得到了以下的結(jié)果:當(dāng)SKIPIF1<0很大時,SKIPIF1<0(常數(shù)SKIPIF1<0).利用以上公式,可以估計SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由題意SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,故選:C.5.(2023·山西陽泉·統(tǒng)考三模)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0存在零點(diǎn).則實(shí)數(shù)m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,得函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0存在零點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)m的取值范圍是SKIPIF1<0.故選:B.6.(2023·安徽黃山·統(tǒng)考三模)“SKIPIF1<0”是“函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增”的(
)A.充分不必要條件 B.充要條件C.必要不充分條件 D.既不充分也不必要條件【答案】C【解析】令SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因?yàn)镾KIPIF1<0是SKIPIF1<0上的增函數(shù),則需使SKIPIF1<0是SKIPIF1<0上的增函數(shù)且SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0.因?yàn)镾KIPIF1<0?SKIPIF1<0,故SKIPIF1<0是SKIPIF1<0的必要不充分條件,故選:C.7.(2023·內(nèi)蒙古赤峰·校聯(lián)考三模)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有解,則實(shí)數(shù)b的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0,也即SKIPIF1<0時取等號)∴SKIPIF1<0,故選:C.8.(2023·天津?yàn)I海新·統(tǒng)考三模)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.4 B.6 C.8 D.10【答案】B【解析】由SKIPIF1<0知SKIPIF1<0,結(jié)合SKIPIF1<0,以及換底公式可知,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng),SKIPIF1<0,即SKIPIF1<0時等號成立,即SKIPIF1<0時等號成立,故SKIPIF1<0的最小值為SKIPIF1<0,故選:B.9.(多選題)(2023·全國·高三專題練習(xí))下列運(yùn)算中正確的是(
)A.SKIPIF1<0B.SKIPIF1<0C.當(dāng)SKIPIF1<0時,SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0【答案】BC【解析】SKIPIF1<0,A錯;SKIPIF1<0,B正確;當(dāng)SKIPIF1<0時,SKIPIF1<0,C正確;SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,D錯.故選:BC.10.(多選題)(2023·全國·高三專題練習(xí))已知SKIPIF1<0,現(xiàn)有下面四個命題中正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】AB【解析】當(dāng)SKIPIF1<0時,由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,此時SKIPIF1<0,所以A正確;當(dāng)SKIPIF1<0時,由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,所以B正確.故選:AB.11.(多選題)(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象如下所示.函數(shù)SKIPIF1<0的圖象上有兩個不同的點(diǎn)SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0在SKIPIF1<0上是奇函數(shù)C.SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增函數(shù) D.當(dāng)SKIPIF1<0時,SKIPIF1<0【答案】BCD【解析】對于A,由圖像可知,函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,因?yàn)镾KIPIF1<0經(jīng)過SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故A錯誤.對于B,SKIPIF1<0,定義域SKIPIF1<0關(guān)于原點(diǎn)對稱,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是奇函數(shù),故B正確.對于C,對于SKIPIF1<0,由題意不妨令SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增函數(shù),故C正確.對于D,SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,即當(dāng)SKIPIF1<0時,SKIPIF1<0成立,故D正確.故選:BCD12.(多選題)(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,則下列不等式中成立的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】令SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0,在同一坐標(biāo)系中分別繪出函數(shù)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的圖像,因?yàn)楹瘮?shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解方程組SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0與SKIPIF1<0互為反函數(shù),所以由反函數(shù)性質(zhì)知SKIPIF1<0、SKIPIF1<0關(guān)于SKIPIF1<0對稱,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)a=b=1時,等號成立,所以A、D錯誤,B、C正確.故選:BC13.(2023·四川成都·成都七中校考模擬預(yù)測)設(shè)SKIPIF1<0定義在SKIPIF1<0上且SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,同理可得SKIPIF1<0.故答案為:SKIPIF1<014.(2023·全國·模擬預(yù)測)寫出一個同時具有下列性質(zhì)①②③的函數(shù)SKIPIF1<0______.①SKIPIF1<0;②當(dāng)SKIPIF1<0時,SKIPIF1<0(SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù));③函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱.【答案】SKIPIF1<0(答案不唯一)【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,因此SKIPIF1<0滿足性質(zhì)①;若SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,有SKIPIF1<0,因此SKIPIF1<0滿足性質(zhì)②;當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,有SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,有SKIPIF1<0,于是SKIPIF1<0,SKIPIF1<0,即函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱,因此函數(shù)SKIPIF1<0滿足性質(zhì)③,所以具有性質(zhì)①②③的函數(shù)可以為SKIPIF1<0.故答案為:SKIPIF1<015.(2023·天津和平·統(tǒng)考二模)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為__________.【答案】3【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,根據(jù)基本不等式有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立,所以SKIPIF1<0.則SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.16.(2023·遼寧·校聯(lián)考三模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0【解析】因?yàn)楹瘮?shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),設(shè)SKIPIF1<0,而SKIPIF1<0為奇函數(shù),奇函數(shù)SKIPIF1<0偶函數(shù)SKIPIF1<0奇函數(shù),所以函數(shù)SKIPIF1<0為奇函數(shù),關(guān)于原點(diǎn)對稱,設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0即SKIPIF1<0為SKIPIF1<0上的增函數(shù),故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因?yàn)镾KIPIF1<0,所以1SKIPIF1<0,解得SKIPIF1<0,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<017.(2023·全國·高三專題練習(xí))求值:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.(5)2log32-log3SKIPIF1<0+log38-SKIPIF1<0;(6)(log2125+log425+log85)·(log52+log254+log1258).(7)SKIPIF1<0lg25+lg2+lgSKIPIF1<0+lg(0.01)-1;(8)(lg2)2+lg2·lg50+lg25;(9)(log32+log92)·(log43+log83);(10)2log32-log3SKIPIF1<0+log38-3log55;【解析】(1)原式SKIPIF1<0SKIPIF1<0.(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(3)原式=SKIPIF1<0.(4)原式=SKIPIF1<0=SKIPIF1<0.(5)原式=2log32-5log32+2+3log32-3=-1.(6)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0.(7)原式=SKIPIF1<0SKIPIF1<0(8)原式=(lg2)2+(1+lg5)lg2+lg52=(lg2+lg5+1)lg2+2lg5=(1+1)lg2+2lg5=2(lg2+lg5)=2.(9)(log32+log92)·(log43+log83)=SKIPIF1<0·SKIPIF1<0=SKIPIF1<0·SKIPIF1<0=SKIPIF1<0·SKIPIF1<0=SKIPIF1<0.(10)2log32-log3SKIPIF1<0+log38-3log55=log322+log3(32×2-5)+log323-3=log3(22×32×2-5×23)-3=log332-3=2-3=-1.18.(2023·全國·高三專題練習(xí))(1)計算SKIPIF1<0;(2)已知SKIPIF1<0,求實(shí)數(shù)x的值;(3)若SKIPIF1<0,SKIPIF1<0,用a,b,表示SKIPIF1<0.【解析】(1)原式=SKIPIF1<0;(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以x=109;(3)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.19.(2023·四川成都·統(tǒng)考二模)已知函數(shù)SKIPIF1<0(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0的定義域;(2)當(dāng)函數(shù)SKIPIF1<0的值域?yàn)镽時,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時,令SKIPIF1<0,即SKIPIF1<0①,或SKIPIF1<0②,或SKIPIF1<0③,解①得:SKIPIF1<0,解②得:SKIPIF1<0,解③得:SKIPIF1<0,所以定義域?yàn)镾KIPIF1<0;(2)因?yàn)镾KIPIF1<0的值域?yàn)镽,故SKIPIF1<0能取遍所有正數(shù),由絕對值三角不等式SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.20.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0有意義時SKIPIF1<0的取值范圍為SKIPIF1<0,其中SKIPIF1<0為實(shí)數(shù).(1)求SKIPIF1<0的值;(2)寫出函數(shù)SKIPIF1<0的單調(diào)區(qū)間,并求函數(shù)SKIPIF1<0的最大值.【解析】(1)因?yàn)镾KIPIF1<0有意義時SKIPIF1<0的取值范圍為SKIPIF1<0,所以SKIPIF1<0的解集為SKIPIF1<0,所以SKIPIF1<0和SKIPIF1<0是方程SKIPIF1<0的兩根.由韋達(dá)定理可得SKIPIF1<0,解得SKIPIF1<0.(2)由(1)知,SKIPIF1<0,令SKIPIF1<0,因?yàn)镾KIPIF1<0為增函數(shù),且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<021.(2023·海南省直轄縣級單位·校聯(lián)考一模)已知函數(shù)SKIPIF1<0為奇函數(shù).(1)求常數(shù)SKIPIF1<0的值;(2)當(dāng)SKIPIF1<0時,判斷SKIPIF1<0的單調(diào)性;(3)若函數(shù)SKIPIF1<0,且SKIPIF1<0在區(qū)間SKIPIF1<0上沒有零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)由SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0顯然不成立,經(jīng)驗(yàn)證:SKIPIF1<0符合題意;所以SKIPIF1<0;(2)SKIPIF1<0單調(diào)遞增由(1)知:SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0單調(diào)遞增.(3)由SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,由(2)知:SKIPIF1<0在SKIPIF1<0上遞增,而SKIPIF1<0在SKIPIF1<0上遞減,所以SKIPIF1<0在SKIPIF1<0上遞減,則SKIPIF1<0.又SKIPIF1<0在區(qū)間SKIPIF1<0上無解,故SKIPIF1<022.(2023·高三課時練習(xí))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,值域?yàn)镾KIPIF1<0,且函數(shù)SKIPIF1<0為SKIPIF1<0上的嚴(yán)格減函數(shù),求實(shí)數(shù)a的取值范圍.【解析】由題意有SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,又∵已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,∴SKIPIF1<0.SKIPIF1<0為SKIPIF1<0上的嚴(yán)格減函數(shù),函數(shù)SKIPIF1<0在其定義域SKIPIF1<0上為增函數(shù),則函數(shù)SKIPIF1<0在定義域內(nèi)為減函數(shù),有SKIPIF1<0;函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,值域?yàn)镾KIPIF1<0,則有SKIPIF1<0且SKIPIF1<0,說明SKIPIF1<0是方程SKIPIF1<0的兩個相異實(shí)數(shù)根,且SKIPIF1<0,即方程SKIPIF1<0在區(qū)間(3,+∞)內(nèi)有兩相異實(shí)根.設(shè)SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,又因?yàn)镾KIPIF1<0,綜上可得:SKIPIF1<0,即實(shí)數(shù)a的取值范圍為SKIPIF1<0.1.(2022·北京·統(tǒng)考高考真題)在北京冬奧會上,國家速滑館“冰絲帶”使用高效環(huán)保的二氧化碳跨臨界直冷制冰技術(shù),為實(shí)現(xiàn)綠色冬奧作出了貢獻(xiàn).如圖描述了一定條件下二氧化碳所處的狀態(tài)與T和SKIPIF1<0的關(guān)系,其中T表示溫度,單位是K;P表示壓強(qiáng),單位是SKIPIF1<0.下列結(jié)論中正確的是(
)A.當(dāng)SKIPIF1<0,SKIPIF1<0時,二氧化碳處于液態(tài)B.當(dāng)SKIPIF1<0,SKIPIF1<0時,二氧化碳處于氣態(tài)C.當(dāng)SKIPIF1<0,SKIPIF1<0時,二氧化碳處于超臨界狀態(tài)D.當(dāng)SKIPIF1<0,SKIPIF1<0時,二氧化碳處于超臨界狀態(tài)【答案】D【解析】當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,此時二氧化碳處于固態(tài),故A錯誤.當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,此時二氧化碳處于液態(tài),故B錯誤.當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0與4非常接近,故此時二氧化碳處于固態(tài),對應(yīng)的是非超臨界狀態(tài),故C錯誤.當(dāng)SKIPIF1<0,SKIPIF1<0時,因SKIPIF1<0,故此時二氧化碳處于超臨界狀態(tài),故D正確.故選:D2.(2022·全國·統(tǒng)考高考真題)設(shè)SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】方法一:構(gòu)造法設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故選:C.方法二:比較法SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;②SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故SKIPIF1<03.(2021·全國·高考真題)青少年視力是社會普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),五分記錄法的數(shù)據(jù)L和小數(shù)記錄表的數(shù)據(jù)V的滿足SKIPIF1<0.已知某同學(xué)視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)為(
)(SKIPIF1<0)A.1.5 B.1.2 C.0.8 D.0.6【答案】C【解析】由SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0.故選:C.4.(2020·海南·高考真題)已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增所以SKIPIF1<0故選:D5.(2020·天津·統(tǒng)考高考真題)設(shè)SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D.6.(2020·全國·統(tǒng)考高考真題)Logistic模型是常用數(shù)學(xué)模型之一,可應(yīng)用于流行病學(xué)領(lǐng)域.有學(xué)者根據(jù)公布數(shù)據(jù)建立了某地區(qū)新冠肺炎累計確診病例數(shù)I(t)(t的單位:天)的Logistic模型:SKIPIF1<0,其中K為最大確診病例數(shù).當(dāng)I(SKIPIF1<0)=0.95K時,標(biāo)志著已初步遏制疫情,則SKIPIF1<0約為(
)(ln19≈3)A.60 B.63 C.66 D.69【答案】C【解析】SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0.故選:C.7.(2020·全國·統(tǒng)考高考真題)設(shè)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,所以有SKIPIF1<0,故選:B.8.(2020·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0,則f(x)(
)A.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 B.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減C.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 D.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減【答案】D【解析】由SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 平喘藥分類講課件
- 稅收的基礎(chǔ)講課件
- 干眼的診斷與治療規(guī)范講課件
- 腎透析患者降壓藥的選擇與應(yīng)用講課件
- 上海海事大學(xué)工程熱力學(xué)教學(xué)大綱
- 第20講 識讀裝配圖(課件)-2026年高考機(jī)械制圖一輪復(fù)習(xí)講練測
- 上海行健職業(yè)學(xué)院《高原特色植物研發(fā)與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 教育行業(yè)的數(shù)據(jù)安全與隱私保護(hù)策略探討報告含教育數(shù)據(jù)分析
- 教育技術(shù)重塑教育公平的基石
- 教育數(shù)據(jù)分析與商業(yè)智能的結(jié)合實(shí)踐
- 16J934-3中小學(xué)校建筑設(shè)計常用構(gòu)造做法
- 我的家鄉(xiāng)濰坊昌邑宣傳介紹課件
- 國開學(xué)習(xí)網(wǎng)《中國古代文化常識》形考任務(wù)1-3答案
- 食材配送服務(wù)方投標(biāo)方案(技術(shù)標(biāo))
- 內(nèi)河船舶船員健康檢查記錄
- 大學(xué)生應(yīng)急救護(hù)智慧樹知到課后章節(jié)答案2023年下西安歐亞學(xué)院
- 《高中生物必修3課件:細(xì)胞分裂和遺傳》
- 言語障礙送教上門教案20次
- QGW 203008-2018 風(fēng)力發(fā)電機(jī)組通用技術(shù)規(guī)范 緊固件-C
- 個人理財理論與實(shí)務(wù)李杰輝課后參考答案
- 醫(yī)院總務(wù)科工作職責(zé)
評論
0/150
提交評論