




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆吉林省延邊市汪清縣第六中學高三最后一模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.以下關于的命題,正確的是A.函數在區間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象2.設函數,則,的大致圖象大致是的()A. B.C. D.3.射線測厚技術原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數的底數,為被測物厚度,為被測物的密度,是被測物對射線的吸收系數.工業上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質厚度,,結果精確到0.001)A.0.110 B.0.112 C. D.4.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.5.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.6.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.7.設是虛數單位,若復數,則()A. B. C. D.8.若(是虛數單位),則的值為()A.3 B.5 C. D.9.如圖是國家統計局于2020年1月9日發布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環比)根據該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環比持平B.2018年12月至2019年12月全國居民消費價格環比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格10.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.11.設是定義在實數集上的函數,滿足條件是偶函數,且當時,,則,,的大小關系是()A. B. C. D.12.已知四棱錐的底面為矩形,底面,點在線段上,以為直徑的圓過點.若,則的面積的最小值為()A.9 B.7 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則展開式的系數為__________.14.已知函數,若關于的方程恰有四個不同的解,則實數的取值范圍是______.15.已知的展開式中第項與第項的二項式系數相等,則__________.16.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內切圓方程是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,底面是等邊三角形,側面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.18.(12分)已知函數.(1)討論的零點個數;(2)證明:當時,.19.(12分)已知函數.(1)解不等式;(2)使得,求實數的取值范圍.20.(12分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.21.(12分)已知函數,.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數,當時,討論零點的個數.22.(10分)設為等差數列的前項和,且,.(1)求數列的通項公式;(2)若滿足不等式的正整數恰有個,求正實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.2、B【解析】
采用排除法:通過判斷函數的奇偶性排除選項A;通過判斷特殊點的函數值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數的定義域為,其關于原點對稱,因為,所以函數為奇函數,其圖象關于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點睛】本題考查利用函數的奇偶性和特殊點函數值符號判斷函數圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數值符號是求解本題的關鍵;屬于中檔題、常考題型.3、C【解析】
根據題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數為.故選:C【點睛】本題主要考查知識的遷移能力,把數學知識與物理知識相融合;重點考查指數型函數,利用指數的相關性質來研究指數型函數的性質,以及解指數型方程;屬于中檔題.4、C【解析】
由題可推斷出和都是直角三角形,設球心為,要使三棱錐的體積最大,則需滿足,結合幾何關系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設,則有,又,所以,當且僅當時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎題5、B【解析】
通過拋物線的定義,轉化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結,當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質,直線與拋物線的位置關系,轉化思想的應用,屬于基礎題.6、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關鍵,是基礎題.7、A【解析】
結合復數的除法運算和模長公式求解即可【詳解】∵復數,∴,,則,故選:A.【點睛】本題考查復數的除法、模長、平方運算,屬于基礎題8、D【解析】
直接利用復數的模的求法的運算法則求解即可.【詳解】(是虛數單位)可得解得本題正確選項:【點睛】本題考查復數的模的運算法則的應用,復數的模的求法,考查計算能力.9、D【解析】
先對圖表數據的分析處理,再結簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數據的分析處理能力及進行簡單的合情推理,屬于中檔題.10、C【解析】
根據三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎題.11、C【解析】∵y=f(x+1)是偶函數,∴f(-x+1)=f(x+1),即函數f(x)關于x=1對稱.
∵當x≥1時,為減函數,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C12、C【解析】
根據線面垂直的性質以及線面垂直的判定,根據勾股定理,得到之間的等量關系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設,,則.因為平面,平面,所以.又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因為,當且僅當,時等號成立,所以.故選:C.【點睛】本題考查空間幾何體的線面位置關系及基本不等式的應用,考查空間想象能力以及數形結合思想,涉及線面垂直的判定和性質,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據定積分求出的值,再用二項展開式公式即可求解.【詳解】因為所以的通項公式為當時,當時,故展開式中的系數為故答案為:【點睛】此題考查定積分公式,二項展開式公式等知識點,屬于簡單題目.14、【解析】
設,判斷為偶函數,考慮x>0時,的解析式和零點個數,利用導數分析函數的單調性,作函數大致圖象,即可得到的范圍.【詳解】設,則在是偶函數,當時,,由得,記,,,故函數在增,而,所以在減,在增,,當時,,當時,,因此的圖象為因此實數的取值范圍是.【點睛】本題主要考查了函數的零點的個數問題,涉及構造函數,函數的奇偶性,利用導數研究函數單調性,考查了數形結合思想方法,以及化簡運算能力和推理能力,屬于難題.15、【解析】
根據的展開式中第項與第項的二項式系數相等,得到,再利用組合數公式求解.【詳解】因為的展開式中第項與第項的二項式系數相等,所以,即,所以,即,解得.故答案為:10【點睛】本題主要考查二項式的系數,還考查了運算求解的能力,屬于基礎題.16、【解析】
利用公式計算出,其中為的周長,為內切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)連結BM,推導出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進而AA1⊥平面BCM,AA1⊥MB,推導出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導出△ABA1是等腰直角三角形,設AB,則AA1=2a,BM=AM=a,推導出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結,因為是矩形,所以,因為,所以,又因為,,所以平面,所以,又因為,所以是中點,取中點,連結,,因為是的中點,則且,所以且,所以四邊形是平行四邊形,所以,又因為平面,平面,所以平面.(圖1)(圖2)(2)因為,所以是等腰直角三角形,設,則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標原點,,,的方向分別為軸,軸,軸的正方向建立空間直角坐標系,則,,.所以,則,,設平面的法向量為,則即取得.故平面的一個法向量為,因為平面的一個法向量為,則.因為二面角為鈍角,所以二面角的余弦值為.【點睛】本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.18、(1)見解析(2)見解析【解析】
(1)求出,分別以當,,時,結合函數的單調性和最值判斷零點的個數.(2)令,結合導數求出;同理可求出滿足,從而可得,進而證明.【詳解】解析:(1),,當時,,單調遞減,,,此時有1個零點;當時,無零點;當時,由得,由得,∴在單調遞減,在單調遞增,∴在處取得最小值,若,則,此時沒有零點;若,則,此時有1個零點;若,則,,求導易得,此時在,上各有1個零點.綜上可得時,沒有零點,或時,有1個零點,時,有2個零點.(2)令,則,當時,;當時,,∴.令,則,當時,,當時,,∴,∴,,∴,即.【點睛】本題考查了導數判斷函數零點問題,考查了運用導數證明不等式問題,考查了分類的數學思想.本題的難點在于第二問不等式的證明中,合理設出函數,通過比較最值證明.19、(1);(2)或.【解析】
(1)分段討論得出函數的解析式,再分范圍解不等式,可得解集;(2)先求出函數的最小值,再建立關于的不等式,可求得實數的取值范圍.【詳解】(1)因為,所以當時,;當時,無解;當時,;綜上,不等式的解集為;(2),又,或.【點睛】本題考查分段函數,絕對值不等式的解法,以及關于函數的存在和任意的問題,屬于中檔題.20、(1)(2)【解析】
(1)利用余弦定理可得的長;(2)利用面積得出,結合正弦定理可得.【詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時一般選用正弦定理,已知邊較多時一般選用余弦定理.21、(1);(2)見解析.【解析】
(1)設切點坐標為,然后根據可解得實數的值;(2)令,,然后對實數進行分類討論,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司負責人檔案管理制度
- 公司貨車于保養管理制度
- 公司車輛節假日管理制度
- 出租車公司訂單管理制度
- 創業孵化器設備管理制度
- 醫務衛生設施設備管理制度
- 富士康工廠設備管理制度
- 對講機通訊設備管理制度
- 山東病毒性肺炎管理制度
- 幼兒園實施設備管理制度
- 期末試卷(試題)(含答案)-2024-2025學年一年級下冊數學北師大版
- 上海浦東新區公辦學校儲備教師教輔招聘筆試真題2022
- 人教版高中政治必修四課本考點總結
- 第5章 自動駕駛儀系統《民航飛機自動飛行控制系統》
- DB4401-T 19-2019涉河建設項目河道管理技術規范-(高清現行)
- 五星級酒店投資預算
- 兒科常用藥、用藥特點及護理ppt
- 胎心監護以及判讀
- 企業資產損失所得稅稅前扣除鑒證業務操作的指南
- 高等數學(下冊)資料期末復習試題與答案
- 四沖程內燃機 機械原理課程設計說明書
評論
0/150
提交評論