2025屆青海省玉樹市重點中學高三第三次測評數學試卷含解析_第1頁
2025屆青海省玉樹市重點中學高三第三次測評數學試卷含解析_第2頁
2025屆青海省玉樹市重點中學高三第三次測評數學試卷含解析_第3頁
2025屆青海省玉樹市重點中學高三第三次測評數學試卷含解析_第4頁
2025屆青海省玉樹市重點中學高三第三次測評數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆青海省玉樹市重點中學高三第三次測評數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以OF為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.2.已知,則的值構成的集合是()A. B. C. D.3.趙爽是我國古代數學家、天文學家,大約在公元222年,趙爽為《周髀算經》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設,若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.4.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.5.在一個數列中,如果,都有(為常數),那么這個數列叫做等積數列,叫做這個數列的公積.已知數列是等積數列,且,,公積為,則()A. B. C. D.6.函數的值域為()A. B. C. D.7.已知傾斜角為的直線與直線垂直,則()A. B. C. D.8.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.9.若不等式在區間內的解集中有且僅有三個整數,則實數的取值范圍是()A. B.C. D.10.如圖所示的程序框圖輸出的是126,則①應為()A. B. C. D.11.若的展開式中的系數為-45,則實數的值為()A. B.2 C. D.12.已知某批零件的長度誤差(單位:毫米)服從正態分布,從中隨機取一件,其長度誤差落在區間(3,6)內的概率為()(附:若隨機變量ξ服從正態分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%二、填空題:本題共4小題,每小題5分,共20分。13.假設10公里長跑,甲跑出優秀的概率為,乙跑出優秀的概率為,丙跑出優秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優秀的概率為________.14.已知實數,滿足則的取值范圍是______.15.若函數,則使得不等式成立的的取值范圍為_________.16.已知函數,且,,使得,則實數m的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數的取值范圍.18.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),將曲線上每一點的橫坐標變為原來的倍,縱坐標不變,得到曲線,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,射線與曲線交于點,將射線繞極點逆時針方向旋轉交曲線于點.(1)求曲線的參數方程;(2)求面積的最大值.19.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數.以下莖葉圖記錄了他們的考試分數(以十位數字為莖,個位數字為葉):若分數不低于95分,則稱該員工的成績為“優秀”.(1)從這20人中任取3人,求恰有1人成績“優秀”的概率;(2)根據這20人的分數補全下方的頻率分布表和頻率分布直方圖,并根據頻率分布直方圖解決下面的問題.組別分組頻數頻率1234①估計所有員工的平均分數(同一組中的數據用該組區間的中點值作代表);②若從所有員工中任選3人,記表示抽到的員工成績為“優秀”的人數,求的分布列和數學期望.20.(12分)已知數列的各項均為正數,為其前n項和,對于任意的滿足關系式.(1)求數列的通項公式;(2)設數列的通項公式是,前n項和為,求證:對于任意的正數n,總有.21.(12分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點,AEBD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結果,不要求過程).22.(10分)已知關于的不等式有解.(1)求實數的最大值;(2)若,,均為正實數,且滿足.證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關系,可求雙曲線的離心率.【詳解】設與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優先考慮幾何法,避免代數法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來.2、C【解析】

對分奇數、偶數進行討論,利用誘導公式化簡可得.【詳解】為偶數時,;為奇數時,,則的值構成的集合為.【點睛】本題考查三角式的化簡,誘導公式,分類討論,屬于基本題.3、A【解析】

根據幾何概率計算公式,求出中間小三角形區域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎題.4、A【解析】

設平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數量積的運算律可求得的值,即為所求.【詳解】設平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數量積的運算性質的應用,考查計算能力,屬于中等題.5、B【解析】

計算出的值,推導出,再由,結合數列的周期性可求得數列的前項和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點睛】本題考查數列求和,考查了數列的新定義,推導出數列的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.6、A【解析】

由計算出的取值范圍,利用正弦函數的基本性質可求得函數的值域.【詳解】,,,因此,函數的值域為.故選:A.【點睛】本題考查正弦型函數在區間上的值域的求解,解答的關鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎題.7、D【解析】

傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數基本關系式即可得出結果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關系,同角三角函數基本關系式,考查計算能力,屬于基礎題.8、A【解析】

由題先畫出基本圖形,結合向量加法和點乘運算化簡可得,結合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應用,數形結合思想,屬于中檔題9、C【解析】

由題可知,設函數,,根據導數求出的極值點,得出單調性,根據在區間內的解集中有且僅有三個整數,轉化為在區間內的解集中有且僅有三個整數,結合圖象,可求出實數的取值范圍.【詳解】設函數,,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數根;當時,在內的解集中僅有三個整數,只需,,所以.故選:C.【點睛】本題考查不等式的解法和應用問題,還涉及利用導數求函數單調性和函數圖象,同時考查數形結合思想和解題能力.10、B【解析】試題分析:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環的條件.解:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環的條件.∵S=2+22+…+21=121,故①中應填n≤1.故選B點評:算法是新課程中的新增加的內容,也必然是新高考中的一個熱點,應高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤.11、D【解析】

將多項式的乘法式展開,結合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應用,指定項系數的求法,屬于基礎題.12、B【解析】試題分析:由題意故選B.考點:正態分布二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分跑出優秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【詳解】剛好有2人跑出優秀有三種情況:其一是只有甲、乙兩人跑出優秀的概率為;其二是只有甲、丙兩人跑出優秀的概率為;其三是只有乙、丙兩人跑出優秀的概率為,三種情況相加得.即剛好有2人跑出優秀的概率為.故答案為:【點睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎題.14、【解析】

根據約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據幾何關系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【點睛】本題考查了非線性約束條件下線性規劃的簡單應用,由數形結合法求線性目標函數的取值范圍,屬于中檔題.15、【解析】

分,兩種情況代入討論即可求解.【詳解】,當時,,符合;當時,,不滿足.故答案為:【點睛】本題主要考查了分段函數的計算,考查了分類討論的思想.16、【解析】

根據條件轉化為函數在上的值域是函數在上的值域的子集;分別求值域即可得到結論.【詳解】解:依題意,,即函數在上的值域是函數在上的值域的子集.因為在上的值域為()或(),在上的值域為,故或,解得故答案為:.【點睛】本題考查了分段函數的值域求參數的取值范圍,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用定義法求出函數在上單調遞增,由和,求出,求出,運用單調性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調遞增,恒成立,設,利用三角恒等變換化簡,結合恒成立的條件,構造新函數,利用單調性和最值,求出實數的取值范圍.【詳解】(1)設,,所以函數在上單調遞增,又因為和,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設,則,令,則,所以在區間上單調遞增,所以,根據條件,只要,所以.【點睛】本題考查利用定義法求函數的單調性和利用單調性求不等式的解集,考查不等式恒成立問題,還運用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉化思想和解題能力.18、(1)(為參數);(2).【解析】

(1)根據伸縮變換結合曲線的參數方程可得出曲線的參數方程;(2)將曲線的方程化為普通方程,然后化為極坐標方程,設點的極坐標為,點的極坐標為,將這兩點的極坐標代入橢圓的極坐標方程,得出和關于的表達式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數方程為(為參數),將曲線上每一點的橫坐標變為原來的倍,縱坐標不變,得到曲線,則曲線的參數方程為(為參數);(2)將曲線的參數方程化為普通方程得,化為極坐標方程得,即,設點的極坐標為,點的極坐標為,將這兩點的極坐標代入橢圓的極坐標方程得,,的面積為,當時,的面積取到最大值.【點睛】本題考查參數方程、極坐標方程與普通方程的互化,考查了伸縮變換,同時也考查了利用極坐標方程求解三角形面積的最值問題,要熟悉極坐標方程所適用的基本類型,考查分析問題和解決問題的能力,屬于中等題.19、(1);(2)①82,②分布列見解析,【解析】

(1)從20人中任取3人共有種結果,恰有1人成績“優秀”共有種結果,利用古典概型的概率計算公式計算即可;(2)①平均數的估計值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項分布,不是超幾何分布,利用二項分布的分布列及期望公式求解即可.【詳解】(1)設從20人中任取3人恰有1人成績“優秀”為事件,則,所以,恰有1人“優秀”的概率為.(2)組別分組頻數頻率120.01260.03380.04440.02①,估計所有員工的平均分為82②的可能取值為0、1、2、3,隨機選取1人是“優秀”的概率為,∴;;;;∴的分布列為0123∵,∴數學期望.【點睛】本題考查古典概型的概率計算以及二項分布期望的問題,涉及到頻率分布直方圖、平均數的估計值等知識,是一道容易題.20、(1)(2)證明見解析【解析】

(1)根據公式得到,計算得到答案.(2),根據裂項求和法計算得到,得到證明.【詳解】(1)由已知得時,,故.故數列為等比數列,且公比.又當時,,..(2)..【點睛】本題考查了數列通項公式和證明數列不等式,意在考查學生對于數列公式方法的綜合應用.21、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)1:5【解析】

(Ⅰ)由平面ABD⊥平面BCD,交線為BD,AE⊥BD于E,能證明AE⊥平面BCD;(Ⅱ)以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用體積公式分別求出三棱錐B-AEF與四棱錐A-FEDC的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論