




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
IBMInstituteforBusinessValue|ResearchInsights
Cloud-enabledmanufacturing
OperationsandITleaders
turnambitionintoadvantage
Incollaborationwith
HowIBMcanhelp
IBMcanhelpmanufacturersleveragehybridcloud,AI,andautomationtoachievenewlevelsofbusinessagility.Wehelpyousetyourdirectionbasedona
time-testedIndustry4.0referencearchitectureandindustrystandards,achievescalebyconsistently
deployingadvancedshop-floortechnologiesonanopenplatform,andunleashoptimumvalueby
selectingmanufacturingprocessusecasesto
addressimmediateneeds.Formoreinformation,
visit/industries/manufacturing
HowAWScanhelp
AWShelpsleadingmanufacturerstransformtheir
operationswiththemostadvancedsetofcloud
solutions,includingmachinelearning,IoT,robotics,andanalytics.AWSallowsyoutofocusyour
resourcesonoptimizingproduction,creatingnew
smartproducts,andimprovingoperational
efficienciesacrossthevaluechain,notontheinfrastructuretomakeithappen.Formore
information,visit
/manufacturing/
1
Key
takeaways
Advanceddigitaltechnologies
underpinnedbycloudcanpowermanufacturing
transformation.
Nearlyhalf(48%)ofsurveyed
manufacturersindicatetheycanharnessmorevaluefromcloud.
Companiesneedtopivotfromafocusoncostsavings
forisolatedcloudusecasestoanend-to-end,outcome-drivencloudstrategy.
Innovativemanufacturersareleveragingcloudtobuilda
foundationfordigitaldexterity.
Asubgroupoftopperformershaveimplementeda
data-drivenculture1.7timesmorethantheirclosestpeergroup,positioningthemtoembraceemergingtechnologiesthatdriveoperationaltransformation.
Cloud-enableddigitaltechnologiessuchasAIandIoTcatalyze
reinvention.
Leadingmanufacturersaremodernizingbothhowtheyworkandthetechtoolstheyusewhileinvestinginthedigitalskillsoftheirworkforcetoelevateperformanceandproduction.
2
Capturingcloud’spotential
AstheIndustry4.0eraevolves,manufacturingorganizationshavebeensteadilyembracingcloudcomputing,withmostreporting
significantimplementationprogressin2022.1
ButrecentinsightsfromtheIBMInstituteforBusinessValue(IBMIBV)andAmazonWebServices(AWS)suggestthatmanymanufacturingorganizationsmaynot
beoptimizingthevalue—andopportunity—ofcloudasthecornerstonefordigitaltransformation.Inourglobalsurveyofmanufacturers,onlyhalf(52%)oftheirITexecutivessaytheirorganizationsareharnessingcloud’sbenefits.
Whatisholdingthemback?Threereasonsstandoutinourresearch:
–Asurprisinglylownumberofmanufacturingworkloadshavebeenmigratedtothecloud,hinderingadvancedoperationalinitiativeswherecloudcanbeakeyenabler.
–Somemanufacturerslackintegratedtechnologystrategiesthatincludecloud,AI,IoT,andapplicationmodernizationformanufacturingactivities.
–Somerespondentshavefocusedstrictlyoncostsavingsversusadditionalbusinessoutcomes,suchasimprovingperformanceandincreasingvalueacrosscore
manufacturingoperations.
Thelessonformanufacturers?Merelyadoptingcloudforsimplelift-and-shift
workloadsorstandaloneusecasesisnotenough.Amoreoutcome-drivenapproach
canhelpthemrealizebenefitssuchasboostingproductivity,quality,machineavailability,andsustainability,aswellasacceleratingengineeringeffortsandproductlifecyclemanagement.
Organizationsaretacklingthenextphaseofcomplextechnology-poweredinitiatives—includingsupplychainorchestration,qualityanalysisandresolution,materialsand
productionoptimization,andpredictivemonitoringofassets.Andtheyarelearning
thattheserequireintegrationofdata,security,andexponentialtechnologies,withthecloudasthefoundationtomakeinnovationpossible—andpowerful.Infact,our
researchhasshownthatcombiningcloudcomputingwiththeseotherleversof
businesstransformationcangenerate13timesgreaterbenefitsthancloudalone.2
Withoutamorestrategic,value-drivenapproachtocloud,digitaltransformationinmanufacturingbecomesmorechallenging.Toexplorehowmanufacturing
organizationscanunleashmorevaluefromcloudandtheadvancedtechnologiesit
enables,weanalyzedsurveyresponsesfrombothmanufacturingandITexecutivesatmorethan1,100manufacturingcompaniesworldwidetoassesstheirorganizations’digitaltechnologymaturityanddatamaturity.Respondentsworkinautomotive,
electronics,downstreamoilandgas,chemicals,metals,andindustrialmachinery(see“Studyapproachandmethodology”onpage32).Ouranalysisresultedinfourarchetypes(seeFigure1):
–ConstrainedOperators:behindtheirpeersinbothdigitaltechnologyanddatamanagement
–DigitalEnthusiasts:committedtodigitaltransformationbutlaggingintheirdatapractices
–Data-focusedDeciders:investedindatamanagementbutlackingtechnologyenablement
–TransformationalOptimizers:leveragingdataandtechnologytodrivesuccess.
FIGURE1
Manufacturers’maturityinleveragingdataanddigitaltechnologiesisdefininghowtheyunlockcloud’sdeepervalue.
Highdatamaturity
DD
Data-focusedDeciders
27%ofrespondents
TO
TransformationalOptimizers
27%ofrespondents
Lowdigital
technologymaturity
CO
ConstrainedOperators
22%ofrespondents
DE
Digital
Enthusiasts
24%ofrespondents
Highdigitaltechnologymaturity
Lowdatamaturity
Source:IBMInstituteforBusinessValue
3
Wethenpinpointedfivetraitsthatdistinguish
TransformationalOptimizers,positioningthemtooutperformtheothergroupsinkeyperformancemetricsandachievecloud-drivenbenefits:
–Amoderncloudplatform
–Arobustdatafoundation
–Digitaltechnologyintegration
–Newwaysofworking
–Businessoutcomeslinkedtocloud.
Thisreportdivesdeeperintoeachoftheseattributes,describingthearchetypes’effortsineachareato
supporttheiroperationalpriorities.Anactionguideoffersathree-stepplanformovingforwardbasedonamanufacturer’smaturityindigitaltechnologiesanddatamanagement.
4
Whyhaveonlyhalfofmanufacturingorganizationsharvestedbusiness
outcomesfromcloud?
3in4ofapplication/
systemworkloadsformanufacturing-relatedoperationshavenot
beenmigratedtocloud
3in4oforganizationshavenotestablishedintegrated
technologystrategiesacrosscloud,AI,andapplication
modernizationfor
manufacturingactivities
3in5manufacturing
andITleaderssaytheir
organizationsdonotfocusonbusinessoutcomes
oftechnologyinitiatives
ITQ.Whatpercentageofyourapplications/systemsworkloadshavebeenmigratedfromthedatacenter(s)toyourcloudestate?ITQ.Describeyourorganization’stechnologystrategiesforthefollowingactivities.ManufacturingQandITQ.Towhatextentdoyouagreewiththefollowingstatements:ITandmanufacturingfocusonthebusinessoutcomesoftechnologyinitiatives;
percentagesshowresponsesof4and5ona5-pointscalewhere1=stronglydisagreeand5=stronglyagree.
5
Traitsthattransformmanufacturing
Trait#1
Amodern
cloudplatform
Digitaltransformationisfacilitatedbyhybridcloud,whichcombinesandunifiespubliccloud,privatecloud,andon-premisesenvironmentstocreateasingle,flexible,
cost-optimalITinfrastructurethatenablesorganizationstoprocessdatawhereit
makesthemostsense.3Itenablesreal-timedatacollectedfromsensors,devices,
andmachinesonthefactoryfloortobeusedbyotherfactoryassets,aswellassharedacrossothercomponentsintheenterprisesoftwarestack,includingERPandother
businessmanagementsoftware.4
Similarly,cloudsupportstherequiredITworkloads,suchasoperationaltechnology(OT)-ITintegration,edgeanalytics,OTsecurity,andbothnewandtraditionalapplica-tions.Datafromdifferentmanufacturingoperationscanbecentralized,allowing
cross-factoryinsights,KPIcomparison,andoptimization.5Inadditiontobasiccloud
infrastructureadvantages,morethan60%ofexecutivesinoursurveysaythatadvancedcloudcapabilitiessuchascontainers,portability,andDevSecOpsareanimperativeforsuccess.
Butformanymanufacturers,theircurrentcloudarchitectureinsufficiently
supportsmostoftheirprimaryinitiatives,makingitdifficulttoorchestratethe
multipledigitaltechnologiesrequiredforimplementingthesepriorities(seeFigure2).
Forinstance,predictivemanagementofassetsmightrequirethecloud,IoT,AI,and5G.Manufacturingqualityrootcauseneedsthecloud,IoT,AI,computervision,
andedgecomputing.Withoutthecloudunderpinningtheothertechnologies,theseinitiativescouldstallorevenfail.
FIGURE2
Executivesreporttheircloudarchitectureisinadequateforsomeoftheirmostimportanttechnologyinitiatives.
Importanceofinitiative
Cloudarchitecturesupportive
Importanceofoperationaltechnologyinitiatives
versushavingasupportivecloudarchitectureinplace*
58%
Supplyorchestration
44%
Gap
57%
Manufacturingqualityrootcause
50%
Gap
Materialsoptimization
55%
49%
Gap
54%
Productionoptimization
52%
Supportive
Predictiveassetmonitoringand
performancemanagement51%
48%
Supportive
Manufacturingqualityresolution
51%
40%
Gap
Transportationoptimization
50%
46%
Supportive
*Agapisdefinedasapercentagepointdifferenceofmorethan5%.
ManufacturingQ.Howimportantarethefollowingoperationaltechnologyinitiativestoyourorganization?Percentagesshowresponsesof4and5
ona5-pointscalewhere1=notatallimportantand5=extremely
important.ITQ.Towhatextentdoesyourcloudarchitecturesupportyouroperationalinitiatives?Percentagesshowresponsesof4and5ona
5-pointscalewhere1=notatalland5=toaverylargeextent.
7
TransformationalOptimizershavemadethemostprogressinimplementingcloudtechnologiestosupportadvancedoperationalinitiatives(seeFigure3).Takesupply
orchestrationforexample—acriticalareagiventhataNationalAssociationof
Manufacturerssurveyfoundnearly80%ofmanufacturerscitedsupplychain
disruptionsastheirnumber-onebusinesschallenge.6TransformationalOptimizersreporttheircloudarchitecturesupportssupplyorchestration1.5timesmoreoftenthanpeers.Theyaregainingreal-timetrackingtomonitorandmanagetheflowofmaterialsandtrackworkinprogressandfinishedgoods.Withthisinsight,theycanpreventinventoryissuesbyinterveningwhenanissueoccurs.Manufacturing
executivesestimatethatoptimizedsupplyorchestrationcanyield37%lowersupplychaincosts.
Likewise,TransformationalOptimizersreporttheircloudarchitecturesupportsmanufacturingqualityrootcauseinitiatives1.4timesmoreoftenthanpeers.
Theabilitytoidentifyproblemsordefectsinmanufacturingprocessesandautomaterectificationtranslatestodeterminingthecauseofaproblemfasterandmitigating
recurringissues.Executivesestimatethisfocuscanreducethecostimpactofpoorqualityby57%.
TransformationalOptimizersarealsobetterpositionedforpredictivemanagementofassets—aprioritythatexecutivessaycanincreaseassetavailabilityby52%.
Usingdataandanalytics,predictivecapabilitieshelpfacilitateassetutilizationandavoidcostlydowntimeandrepairs.
8
FIGURE3
TransformationalOptimizersclaimamoremature
cloudarchitecturetosupportoperationaltechnologyinitiatives.
Percentthatsaytheircloudarchitecturesupportstheseoperationaltechnologyinitiatives
38%
TO
DE
CO
DD
36%43%60%
TO
DD
DE
CO
42%45%48%62%
TO
DD
CO
42%49%54%
51%
TO
DD
CO
DE
48%52%56%
47%
TO
DE
CO
DD
35%48%58%
TO
CO
DE
DD
26%34%45%50%
46%
TO
DD
CO
DE
47%52%
38%
Supplyorchestration
Manufacturingqualityrootcause
Materialsoptimization
Productionoptimization
Predictiveassetmonitoringandperformance
management
Manufacturingqualityresolution
Transportationoptimization
ConstrainedOperators
Digital
Enthusiasts
Data-focusedDeciders
TransformationalOptimizers
ITQ.Towhatextentdoesyourcloudarchitecturesupportyour
operationalinitiatives?Percentagesshowresponsesof4and5ona5-pointscalewhere1=notatalland5=toaverylargeextent.
Casestudies
Volkswagentransforms
manufacturingandlogistics7
IBMSystemsManufacturingscalesAIvaluebycombininghybridcloudwithedge
computing8
Totransformitsautomotivemanufacturingand
logisticsprocesses,theVolkswagenGroupbuilttheVolkswagenIndustrialCloudonAWS,whichuses
AWSIoTservicestoconnectdatafrommachines,
plants,andsystemsacrossmorethan120factory
sites.TheVolkswagenIndustrialCloudaimstoyielda30%increaseinproductivity,30%decreasein
factorycosts,andsaveover$1billioninsupplychaincosts.TheGroupisalsousingAWStoexpandbeyondmanufacturingintoride-sharingservices,connected
vehicles,andimmersive,virtualcar-shoppingexperiencestoshapethefutureofmobility.
RatherthanbuildanisolatedAIsolution,IBM
SystemsManufacturingcombinedhybridcloud
withedgecomputingtoscalethevalueofAIacrosstheglobalmanufacturingenterprise.Itdeployeda
first-of-its-kindAIvisualinspectionsystemonassemblylinesinplantsinCanada,Hungary,Mexico,andtheUS.
Thesolutionleveragescloudandedgecomputingtoeliminatebandwidthandlatencyissuesthatarise
fromrunningAIinferencinginadatacenter.TheAImodelsaredeployedtoedgedeviceswhereimagedataisprocessed,enablingthecompanytodetectanomaliesandactontheminrealtime.
AImodelsandedgedevicesaremanagedfroma
centrallocationthroughthecloud,anautomated
processthatreducessoftwaremaintenancecostsby20%.Comparedtoahumaninspector,AIautomationreducedinspectiontimesfrom10minutestoone
minuteinoneusecase.
10
Trait#2
Arobustdatafoundation
Manufacturershavemorethanenoughdatatofuelfar-reachingoperationalchanges,butapproximately90%ofthatdatastagnatesinisolatedsystems.9Cloudcomputingflipsthescript,enablingmanufacturerstocultivateaculturewherehigh-qualitydata
isdemocratizedandemployeesareskilledindigitaltechnologies.Datafrom
equipment,processes,andsystemsfeedsdeeperinsightsthatdrivecontinuousprocessimprovement.
TransformationalOptimizersdemonstratethegreatestdatamaturity,havingimplementedadata-drivenculture1.7timesmorethantheirclosestpeer—Data-focusedDeciders—and2.9timesmorethanConstrainedOperators.
Theseleadersareleveragingthecloudandothertechnologiestostrengthendatamanagementpractices(seeFigure4).Forexample,nearlytwo-thirds(63%)of
TransformationalOptimizershaveteamsofdataexpertswhoareskilledincloudservices,andtheyhavenearreal-timecapabilitiestoupdatedatarepositories.Thishelpsensurethatemployeescantapintothemostcurrentdataforinsightsthatpowerimprovedfactoryoperations.
11
FIGURE4
Cloudunderpinsstrongdatamanagementpracticesto
sharpenfactoryoperations.
43%
TO
DE
CO
DD
Teamsofdataexperts
arepro?cientwithcloudservices
Near-toreal-timeupdatestodata
repositories
APIsareusedfor
internaldata-sharingactivities
APIsareexposedtosharedatawithanecosystemofthirdparties
Sensitivedatahasbeenmigratedandencryptedincloud
45%
51%63%
TO
CO
DD
26%38%
52%
TO
DE
DD
CO
33%40%43%
51%
TO
DD
CO
DE
49%
31%36%40%
TO
CO
DE
DD
Percentthatareimplementingthesedatamanagementpractices
25%29%40%49%
ConstrainedOperators
Digital
Enthusiasts
Data-focusedDeciders
TransformationalOptimizers
ITQ.Towhatextentdoesyourmanufacturingorganizationusethefollowingdatamanagementpractices?Percentagesshowresponsesof4and5ona
5-pointscalewhere1=notatalland5=toaverylargeextent.
Casestudy
PanasonicConnect
conquerscomplexitywithshop-flooranalytics10
Tosupportchipmanufacturersadaptingtonewsemiconductorpackaging
trends,PanasonicConnecthasinfusedadvancedanalyticsintotwoprocesscontrolsolutionsthathaveemergedasthecompany’sfirstsmart-factoryofferings.
Thefirstsolutioncreatedanadvancedplasmadicer—aspecializedtoolformoreprecisecuttingandprocessingofsemiconductorwafers—byfully
automatingthe“recipe”generation,whichdeterminestheoptimal
combinationofdecisionsonvariablesthataffecttheprocess.Thissolutionreducedthedevelopmentcycletimebyasmuchas30%.
Thesecondsolutionoptimizedplasmacleanermachineperformance
throughsmarter,data-drivenmaintenancepractices.Thecombinationofreducedunnecessarymaintenance,proactivepartsordering,andfewermachineoutageshelpeddecreasemaintenancecostsformanufacturingcustomersby50%.
Data-drivenmaintenancepracticeshelpeddecreasemaintenancecostsfor
manufacturingcustomersby50%.
Trait#3
Digital
technologyintegration
Manufacturersrecognizetheimportanceofdigitaltechnologiestotheirinitiatives.
IoTsensorsmonitorplantproduction,energyconsumption,inventory,andasset
maintenance.Additivemanufacturing—alsoknownas3Dprinting—enablescreationofbespokepartsandsupportsagiledesignchanges.AIhelpsautomatemanufacturing
productionprocessesandimprovequalitycontrol,whilethegrowthofgenerativeAIopensthedoortoevenmoreadvancedAIusecases(seePerspective,“AnticipatingtheboostfromgenerativeAI”onpage17).
Thesetechnologies,whendeployedinconcert,propelinnovation.Thecloudenablesthatintegration.TransformationalOptimizersareintegratingthecloudwithenablingtechnologiestoagreaterextentthanpeersinallareasexceptAI,whereData-focusedDecidersarelikelycapitalizingontheircommitmenttodata(seeFigure5).
13
14
FIGURE5
Cloudplatformsenableintegrationofdigitaltechnologiestospurinnovation.
Percentthatareintegratingthesedigitaltechnologieswithcloudplatforms
53%
TO
DD
CO
DE
63%66%
55%
TO
DD
DE
CO
51%
57%
48%
39%
57%
DE
TO
DD
CO
59%
43%
49%
TO
DD
CO
DE
42%
46%
60%
56%
TO
DD
DE
CO
35%
45%
25%
40%
30%
TO
CO
DE
DD
32%
46%
38%
TO
DE
DD
26%
48%
45%
InternetofThings
Roboticprocessautomation
Additivemanufacturing(3D)
AI
Robots
Edgecomputing
5G
ConstrainedOperators
Digital
Enthusiasts
Data-focusedDeciders
TransformationalOptimizers
ITQ.Towhatextentdoyourcloudplatformsintegratewiththe
followingdigitaltechnologiesinyourmanufacturingorganization?Percentagesshowresponsesof4and5ona5-pointscalewhere
1=notatalland5=toaverylargeextent.
OnetechnologythatfusesthepowerofIoTandbothtraditionalandgenerativeAIforenormouspotentialbenefitstothemanufacturingindustryisdigitaltwins.Offeringavirtualrepresentationofasystemacrossitslifecycleandupdatedfromreal-timedata,digitaltwinsusesimulation,machinelearning,andreasoningtostrengthendecision-makinganddriveefficiency,innovation,andcompetitiveness.11Transformational
Optimizersareusingdigitaltwinsdramaticallymorethantheirpeers(seeFigure6).
FIGURE6
Leadingmanufacturersusedigitaltwinstocombinereal-timesimulationandcontrols.
Useofdigitaltwinsinmanufacturingoperations
38%
ProductionoptimizationQualitymanagementPredictivemaintenance
TransformationalOptimizers
56%62%60%
Data-focusedDeciders
47%
Digital
Enthusiasts
25%
38%
48%
ConstrainedOperators
23%
33%
49%
42%
ManufacturingQ.Towhatextenthasyourorganizationuseddigitaltwinsinthefollowingareasofyourmanufacturingoperations?
15
Percentagesshowresponsesof4and5ona5-pointscalewhere1=notatalland5=toaverylargeextent.
16
Similarly,TransformationalOptimizersreportheightenedsecurityreadinessthroughthecloud(seeFigure7).TheyrecognizethatthecombinationofAIandthecloudis
criticaltodefendingagainstcyberthreats.AsITandOTbecomemoreintertwined,
theOTnetworkandconnectedOTdevicesareincreasinglyexposedtosecurityrisks,whileremoteaccesstoOTnetworksbyoutsidevendorsfurtherexpandsvulnerabil-ities.Infact,IBMX-Force?reportedthatmanufacturingcontinuedtobethetop
attackedindustryin2022.12
FIGURE7
TransformationalOptimizersarebuildingcyberresiliencewithrobustsecuritypractices.
Adoptionofsecuritypractices
44%
AmatureOTorICSpatchmanagementprogramisinplace
RobustOT/industrial
controlsystem(ICS)assetinventoryisdeveloped
Incidentsaremanagedwithauni?edAIautomation
acrossenvironments
TransformationalOptimizers
63%62%58%
Data-focusedDeciders
39%
Digital
Enthusiasts
35%
43%
49%
Constrained
Operators
26%
29%
40%
47%
ITQ.Towhatextenthasyourmanufacturingorganization
adoptedthefollowingsecuritypractices?Percentagesshowresponsesof4and5ona5-pointscalewhere1=notatalland5=toaverylargeextent.
Perspective
Anticipatingtheboostfrom
generativeAIinmanufacturing
OurstudyrevealsthatmanufacturingexecutivesexpectgenerativeAItoimprovemanufacturingprocessesacrossarangeofareas(seefigure).
Foursignificantpillarsofimpactinclude:
Productionqualityandoptimization.GenerativeAIsystemscaningestalargeamountofproductiondataandproactivelydetectqualityissuesinproduction.
ThecombinationofIoTandgenerativeAIcanidentifyreal-timeanomaliesandoptimizeproduction
accordingly,ultimatelyimprovingoverallequipmenteffectiveness.
Sourcingandprocurement.Offthefactoryfloor,generativeAIcanassistwithvendordiscoveryandevaluation,pricing,supplychainriskassessment,andcontracts.
Predictivemaintenance.Withassetsensorscontinu-ouslymonitoringvariablessuchastemperature,flow,andpressure,generativeAImodelscanleveragethedatatorecognizethenormaloperationalbehaviorofequipmentandthenidentifydeviationstopredictandrectifyequipmentissues.
Productdesignanddevelopment.Anarrayof
alternativesforproducts,parts,components,and/ormaterialscanbecreatedbygenerativeAImodels.
Usingvariablesspecifiedbyengineerssuchascost
andoperationalcriteria,generativeAIalgorithmscanhelpcreateentirelynew,innovativedesigns.
OperationswhereexecutivesexpectgenerativeAItohaveanimpact
1 2 3
4
Identi?cation,design,anddevelopmentofproducts/parts/
5
ManufacturingQ.WheredoyouseegenerativeAIimpacting
yourmanufacturingoperations?Percentagesshow
responsesof4and5ona5-pointscalewhere1=verylowand5=veryhigh.
Casestudies
DoosanDigitalInnovationprotectsinvestmentin
digitaltransformation13
SRAMdrivesinnovationwithnext-generation
manufacturing14
DoosanDigitalInnovation(DDI)embracedtheideathataneffective,comprehensivecybersecurity
programshouldbethefoundationofdigitaltransfor-mation.Tothatend,thecompanyidentifiedand
mappedappropriaterolesandresponsibilitiesofitsstaffworkingwithinthesecurityinfrastructure.DDIalsoconsolidateditsregionalsecurityoperation
centers(SOCs)toaunified,globalSOCthatdelivers24x7monitoringandprotection.
TocontroltheoperationsoftheglobalSOC,DDI
updateditscoresecurityinfrastructure.Theteam
enhancedthecompany’sproactivesecurityincidentandeventmanagementefforts,deployingtechnol-ogiestooverseeendpointdetectionandresponse
anddeliveringAI-basedautomationthatfurther
streamlinesthreatresponses.Asaresult,thecompanyacceleratedthreatreactions,cuttingapproximately85%fromresponsetimes.
Toimprovethecyclingexperience,SRAM,abicyclecomponentmanufacturer,hasembracedtheuseof
newmaterialsandadvancedmanufacturing
techniques.WorkingwithAWSanditspartner
Autodesk,SRAMisleveraginggenerativedesign,whichisaformofAIthatusescloudcomputingtospeedtimetodesignandtimetomarketwhile
optimizingperformance.
Usinggenerativedesigntools,SRAMcannow
generatemultipleconceptsatthebeginningoftheprojectandthenevaluateeachtochoosetheonesmostpromisingtobeproducedusingadditive
manufacturing(3Dprinting).Thisapproachenabledthemtoproduceapartthatwastwiceasstrongand20%lighterinlesstimewithfewerresources.
19
Trait#4
Newwaysofworking
TransformationalOptimizershaveradicallychangedhowtheirorganizationsworkby:
–Investingindigitalanddataskills
–Trainingtheiremployeesindigitaltechnologies
–RedefiningtherelationshipbetweenmanufacturingandIT
–Establishinganoperatingmodelfortheircloudoperations.
Theyoutperformtheirpeersineachareaandgaintheaddedbenefitofmakingtraditionallymundanefactoriesmoreappealingtotechworkers.
Nurturingdigitalandtechnologyskills
Whileeacharchetypeisactivelyinvestingintechnologyskills,Transformational
Optimizersareaheadinallareas(seeFigure8).Theysensetheurgencyofhaving
employeeswhocanputintelligentautomation,data,anddigitaltechnologiestowork.
Threeinfivesaytheyaretrainingtheiremployeeswithdigitaltechnologiesand
intelligentmachines/devices,comparedtolessthanhalfoftheotherarchetypes.
FIGURE8
Manufacturingorganizationsareinvestingintheirworkforcestoclosethedigitalskillsgap.
Percentthatareinvestingintheseskillstosupportdigitalinitiatives
TO
DE
DD
45%
61%65%
TO
DE
DD
47%
55%
61%
TO
DE
DD
CO
30%39%42%53%
42%
TO
DE
CO
DD
43%
33%
48%
TO
CO
DE
DD
30%34%
39%44%
Cloudsecurity
Clouddeploymentandmigration
Roboticp
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CACEM 15.2-03-2020城市公共交通運營服務第3部分:場站管理要求
- 互聯網協議版本解析試題及答案
- 嵌入式編程技術的研究與應用試題及答案
- 應試技巧公路工程試題及答案輔助
- 公路工程考試前沿知識與試題及答案
- 在測試團隊中培養更好的溝通與協作氛圍試題及答案
- 客流監測預警管理制度
- 公司快遞消毒管理制度
- 庫存用品使用管理制度
- 化工安全教材管理制度
- 中國獸藥典三部 2020年版
- 上海市社區工作者管理辦法
- 廣西壯族自治區北海市各縣區鄉鎮行政村村莊村名明細及行政區劃劃分代碼居民村民委員會
- Q∕SY 05038.4-2018 油氣管道儀表檢測及自動化控制技術規范 第4部分:監控與數據采集系統
- 三調土地利用現狀分類和三大地類對應甄選
- 初中物理公式總結
- 中國醫院質量安全管理 第4-6部分:醫療管理 醫療安全(不良)事件管理 T∕CHAS 10-4-6-2018
- 老年人的居家護理課件
- DB51∕T 2858-2021 農業科技成果效益計算方法及規程
- 高三理科數學第一輪復習計劃
- 《未成年人保護法》學習教案
評論
0/150
提交評論