




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年云南省昆明市祿勸縣第一中學高三第四次聯模數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國鐵路總公司相關負責人表示,到2018年底,全國鐵路營業里程達到13.1萬公里,其中高鐵營業里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著B.從2014年到2018年這5年,高鐵運營里程與年價正相關C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上D.從2014年到2018年這5年,高鐵運營里程數依次成等差數列2.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統民間藝術之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內部隨機取一個點,則該點不落在任何一個小正方形內的概率是()A. B. C. D.3.“是函數在區間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.若集合,,則=()A. B. C. D.5.在條件下,目標函數的最大值為40,則的最小值是()A. B. C. D.26.下列四個結論中正確的個數是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.47.如圖,正方體中,,,,分別為棱、、、的中點,則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線8.如圖所示,網絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.89.已知,,,則的最小值為()A. B. C. D.10.雙曲線的漸近線方程為()A. B. C. D.11.設函數,若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.12.的展開式中有理項有()A.項 B.項 C.項 D.項二、填空題:本題共4小題,每小題5分,共20分。13.已知數列是等比數列,,則__________.14.數列的前項和為,則數列的前項和_____.15.已知復數z1=1﹣2i,z2=a+2i(其中i是虛數單位,a∈R),若z1?z2是純虛數,則a的值為_____.16.設等差數列的前項和為,若,,則數列的公差________,通項公式________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)追求人類與生存環境的和諧發展是中國特色社會主義生態文明的價值取向.為了改善空氣質量,某城市環保局隨機抽取了一年內100天的空氣質量指數()的檢測數據,結果統計如下:空氣質量優良輕度污染中度污染重度污染嚴重污染天數61418272510(1)從空氣質量指數屬于,的天數中任取3天,求這3天中空氣質量至少有2天為優的概率;(2)已知某企業每天的經濟損失(單位:元)與空氣質量指數的關系式為,試估計該企業一個月(按30天計算)的經濟損失的數學期望.18.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.19.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.20.(12分)設函數.(Ⅰ)討論函數的單調性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數列中,,且,若數列的前n項和為,求證:.21.(12分)設橢圓的左右焦點分別為,離心率,右準線為,是上的兩個動點,.(Ⅰ)若,求的值;(Ⅱ)證明:當取最小值時,與共線.22.(10分)已知拋物線上一點到焦點的距離為2,(1)求的值與拋物線的方程;(2)拋物線上第一象限內的動點在點右側,拋物線上第四象限內的動點,滿足,求直線的斜率范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由折線圖逐項分析即可求解【詳解】選項,顯然正確;對于,,選項正確;1.6,1.9,2.2,2.5,2.9不是等差數列,故錯.故選:D【點睛】本題考查統計的知識,考查數據處理能力和應用意識,是基礎題2.D【解析】
由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應用,屬于基礎題.3.C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.4.C【解析】試題分析:化簡集合故選C.考點:集合的運算.5.B【解析】
畫出可行域和目標函數,根據平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標函數,根據圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.【點睛】本題考查了線性規劃中根據最值求參數,均值不等式,意在考查學生的綜合應用能力.6.C【解析】
由題意,(1)中,根據全稱命題與存在性命題的關系,即可判定是正確的;(2)中,根據正態分布曲線的性質,即可判定是正確的;(3)中,由回歸直線方程的性質和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據全稱命題與存在性命題的關系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態分布曲線的性質,可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當時,可得成立,當時,只需滿足,所以“”是“”成立的充分不必要條件.【點睛】本題主要考查了命題的真假判定及應用,其中解答中熟記含有量詞的否定、正態分布曲線的性質、回歸直線方程的性質,以及基本不等式的應用等知識點的應用,逐項判定是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.7.C【解析】
充分利用正方體的幾何特征,利用線面平行的判定定理,根據判斷A的正誤.根據,判斷B的正誤.根據與相交,判斷C的正誤.根據,判斷D的正誤.【詳解】在正方體中,因為,所以平面,故A正確.因為,所以,所以平面故B正確.因為,所以平面,故D正確.因為與相交,所以與平面相交,故C錯誤.故選:C【點睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.8.A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于常考題型.9.B【解析】,選B10.C【解析】
根據雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.11.A【解析】
由求出范圍,結合正弦函數的圖象零點特征,建立不等量關系,即可求解.【詳解】當時,,∵在上有且僅有5個零點,∴,∴.故選:A.【點睛】本題考查正弦型函數的性質,整體代換是解題的關鍵,屬于基礎題.12.B【解析】
由二項展開式定理求出通項,求出的指數為整數時的個數,即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據等比數列通項公式,首先求得,然后求得.【詳解】設的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數列通項公式的基本量計算,屬于基礎題.14.【解析】
解:兩式作差,得,經過檢驗得出數列的通項公式,進而求得的通項公式,裂項相消求和即可.【詳解】解:兩式作差,得化簡得,檢驗:當n=1時,,所以數列是以2為首項,2為公比的等比數列;,,令故填:.【點睛】本題考查求數列的通項公式,裂項相消求數列的前n項和,解題過程中需要注意n的范圍以及對特殊項的討論,側重考查運算能力.15.-1【解析】
由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數,∴,解得:a=﹣1.故答案為:﹣1.【點睛】本題考查了復數的概念和運算,屬于基礎題.16.2【解析】
直接利用等差數列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數列的基本計算,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)9060元【解析】
(1)根據古典概型概率公式和組合數的計算可得所求概率;(2)任選一天,設該天的經濟損失為元,分別求出,,,進而求得數學期望,據此得出該企業一個月經濟損失的數學期望.【詳解】解:(1)設為選取的3天中空氣質量為優的天數,則.(2)任選一天,設該天的經濟損失為元,則的可能取值為0,220,1480,,,,所以(元),故該企業一個月的經濟損失的數學期望為(元).【點睛】本題考查古典概型概率公式和組合數的計算及數學期望,屬于基礎題.18.(1)證明見解析.(2)【解析】
(1)連接AC1,BC1,結合中位線定理可證MN∥BC1,再結合線面垂直的判定定理和線面垂直的性質分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設C1到平面B1CM的距離為h,則有,結合幾何關系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點,設C1到平面B1CM的距離為h,因為MP,所以?MP,因為CM,B1C;B1M,所以所以:CM?B1M.因為,所以,解得所以點,到平面的距離為【點睛】本題主要考查面面垂直的證明以及點到平面的距離,一般證明面面垂直都用線面垂直轉化為面面垂直,而點到面的距離常用體積轉化來求,屬于中檔題19.(Ⅰ)見解析(Ⅱ)存在,此時為的中點.【解析】
(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設存在點滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設,,計算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設存在點滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設,則,在中,設(),由得,即,得,∴,依題意知,即,解得,此時為的中點.綜上知,存在點,使得二面角的余弦值,此時為的中點.【點睛】本題考查了面面垂直,根據二面角確定點的位置,意在考查學生的空間想象能力和計算能力,也可以建立空間直角坐標系解得答案.20.(Ⅰ)函數在上單調遞減,在單調遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】
(Ⅰ)先求出函數f(x)的導數,通過解關于導數的不等式,從而求出函數的單調區間;(Ⅱ)設g(x)=f(x)﹣ax,先求出函數g(x)的導數,通過討論a的范圍,得到函數的單調性,從而求出a的最小值;(Ⅲ)先求出數列是以為首項,1為公差的等差數列,,,問題轉化為證明:,通過換元法或數學歸納法進行證明即可.【詳解】解:(Ⅰ)f(x)的定義域為(﹣1,+∞),,當時,f′(x)<2,當時,f′(x)>2,所以函數f(x)在上單調遞減,在單調遞增.(Ⅱ)設,則,因為x≥2,故,(ⅰ)當a≥1時,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調遞減,而g(2)=2,所以對所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當1<a<1時,2<1﹣a<1,若,則g′(x)>2,g(x)單調遞增,而g(2)=2,所以當時,g(x)>2,即f(x)>ax;(ⅲ)當a≤1時,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調遞增,而g(2)=2,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車融資租賃出借資金借款合同
- 成品油運輸與物流信息化管理合同
- 餐廳餐飲文化傳承與發展合作協議
- 城市環衛工人意外傷害賠償合同范本
- 高端商場專業安保場務專員勞動合同范本
- 紡織品百貨品牌加盟合作協議
- 車輛保險代理合同范本:全方位車輛保險代理服務協議
- 旅游景區場地租賃分成及運營管理合同
- 高科技環保裝備廠房建造與環保技術研發合同
- 餐飲品牌形象設計與推廣合同
- 學堂課程在線人工智能與創業智慧(北林)期末測試答案
- 2023-2024學年河北省石家莊市高二下學期7月期末考試數學試題(解析版)
- 2025年江西省中考語文真題無答案
- 2025年上海市中考數學試卷附答案
- 關于七一活動方案
- 2025年湖南省高考物理試卷真題(含答案解析)
- 關于衛生院“十五五”發展規劃(完整本)
- 福州市重點中學2025屆英語七下期末聯考試題含答案
- 2025年初中學業水平考試地理試卷(附答案)
- 大型醫院巡查醫院自查表
- 2025年時事政治考試100題(含參考答案)
評論
0/150
提交評論