




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖南省洞口縣第四中學高二數學第一學期期末教學質量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是和的等比中項,則圓錐曲線的離心率為()A. B.或2C. D.或2.已知,則下列不等式一定成立的是()A. B.C. D.3.拋物線的焦點到準線的距離為()A. B.C. D.4.2020年12月4日,嫦娥五號探測器在月球表面第一次動態展示國旗.1949年公布的《國旗制法說明》中就五星的位置規定:大五角星有一個角尖正向上方,四顆小五角星均各有一個角尖正對大五角星的中心點.有人發現,第三顆小星的姿態與大星相近.為便于研究,如圖,以大星的中心點為原點,建立直角坐標系,,,,分別是大星中心點與四顆小星中心點的聯結線,,則第三顆小星的一條邊AB所在直線的傾斜角約為()A. B.C. D.5.已知,是球的球面上兩點,,為該球面上的動點,若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.6.命題“,則”及其逆命題、否命題和逆否命題這四個命題中,真命題的個數為()A.0 B.2C.3 D.47.如圖,已知、分別是橢圓的左、右焦點,點、在橢圓上,四邊形是梯形,,且,則的面積為()A. B.C. D.8.△ABC兩個頂點坐標A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.9.直線的傾斜角為A. B.C. D.10.對于三次函數,給出定義:設是函數的導數,是的導數,若方程有實數解,則稱點為函數的“拐點”.經過探究發現:任何一個三次函數都有“拐點”;任何一個三次函數圖象都有對稱中心,且“拐點”就是對稱中心.設函數,則()A. B.C. D.11.已知兩個向量,,且,則的值為()A.-2 B.2C.10 D.-1012.在區間內隨機取一個數則該數滿足的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與,若,則實數a的值為______14.已知平面的法向量為,平面的法向量為,若,則實數______15.已知正數,滿足.若恒成立,則實數的取值范圍是______.16.函數的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求下列不等式的解集:(1);(2)18.(12分)三棱錐中,,,,直線與平面所成的角為,點在線段上.(1)求證:;(2)若點在上,滿足,點滿足,求實數使得二面角的余弦值為.19.(12分)已知四邊形是空間直角坐標系中的一個平行四邊形,且,,(1)求點的坐標;(2)求平行四邊形的面積20.(12分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.21.(12分)已知函數.(1)當時,討論的單調性;(2)當時,,求a的取值范圍.22.(10分)在平面直角坐標系xOy中,圓O以原點為圓心,且經過點.(1)求圓O的方程;(2)若直線與圓O交于兩點A,B,求弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由等比中項的性質可得,分別計算曲線的離心率.【詳解】由是和的等比中項,可得,當時,曲線方程為,該曲線為焦點在軸上的橢圓,離心率,當時,曲線方程為,該曲線為焦點在軸上的雙曲線,離心率,故選:B.2、B【解析】運用不等式的性質及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B3、B【解析】根據拋物線的幾何性質可得選項.【詳解】由得,所以,所以拋物線的焦點到準線的距離為1,故選:B.4、C【解析】由五角星的內角為,可知,又平分第三顆小星的一個角,過作軸平行線,則,即可求出直線的傾斜角.【詳解】都為五角星的中心點,平分第三顆小星的一個角,又五角星的內角為,可知,過作軸平行線,則,所以直線的傾斜角為,故選:C【點睛】關鍵點點睛:本題考查直線傾斜角,解題的關鍵是通過做輔助線找到直線的傾斜角,通過幾何關系求出傾斜角,考查學生的數形結合思想,屬于基礎題.5、C【解析】當平面時,三棱錐體積最大,根據棱長與球半徑關系即可求出球半徑,從而求出表面積.【詳解】當平面時,三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點睛】關鍵點點睛:本題考查三棱錐與球的組合體的綜合問題,本題的關鍵是判斷當平面時,三棱錐體積最大.6、D【解析】首先判斷原命題的真假,寫出其逆命題,即可判斷其真假,再根據互為逆否命題的兩個命題同真假,即可判斷;【詳解】解:因為命題“,則”為真命題,所以其逆否命題也為真命題;其逆命題為:則,顯然也為真命題,故其否命題也為真命題;故命題“,則”及其逆命題、否命題和逆否命題這四個命題中,真命題有4個;故選:D7、A【解析】設點關于原點的對稱點為點,連接、,分析可知、、三點共線,設點、,設直線的方程為,分析可知,將直線的方程與橢圓的方程聯立,列出韋達定理,求出的值,可得出的值,再利用三角形的面積公式可求得結果.【詳解】設點關于原點的對稱點為點,連接、,如下圖所示:因為為、的中點,則四邊形為平行四邊形,可得且,因為,故、、三點共線,設、,易知點,,,由題意可知,,可得,若直線與軸重合,設,,則,不合乎題意;設直線的方程為,聯立,可得,由韋達定理可得,得,,則,可得,故,因此,.故選:A.8、D【解析】根據三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎題.9、B【解析】分析出直線與軸垂直,據此可得出該直線的傾斜角.【詳解】由題意可知,直線與軸垂直,該直線的傾斜角為.故選:B.【點睛】本題考查直線的傾斜角,關鍵是掌握直線傾斜角的定義,屬于基礎題10、B【解析】根據“拐點”的概念可判斷函數的對稱中心,進而求解.【詳解】,,,令,解得:,而,故函數關于點對稱,,,故選:B.11、C【解析】根據向量共線可得滿足的關系,從而可求它們的值,據此可得正確的選項.【詳解】因為,故存在常數,使得,所以,故,所以,故選:C.12、C【解析】求解不等式,利用幾何概型的概率計算公式即可容易求得.【詳解】求解不等式可得:,由幾何概型的概率計算公式可得:在區間內隨機取一個數則該數滿足的概率為.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由可得,從而可求出實數a的值【詳解】因為直線與,且,所以,解得,故答案:14、【解析】由題設可得,結合向量共線的坐標表示求參數即可.【詳解】由題設,平面與平面的法向量共線,∴,則,即,解得.故答案為:.15、【解析】利用基本不等式性質可得的最小值,由恒成立可得即可求出實數的取值范圍.【詳解】解:因為正數,滿足,所以,當且僅當時,即時取等號因為恒成立,所以,解得.故實數的取值范圍是.故答案填:.【點睛】熟練掌握基本不等式的性質和正確轉化恒成立問題是解題的關鍵.16、1【解析】由解析式知定義域為,討論、、,并結合導數研究的單調性,即可求最小值.【詳解】由題設知:定義域為,∴當時,,此時單調遞減;當時,,有,此時單調遞減;當時,,有,此時單調遞增;又在各分段的界點處連續,∴綜上有:時,單調遞減,時,單調遞增;∴故答案為:1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用一元二次不等式的解法求解;(2)利用分式不等式的解法求解.【小問1詳解】解:因為,所以,解得,所以不等式的解集是;【小問2詳解】因為,所以,所以,即,解得,所以不等式的解集是.18、(1)證明見解析;(2).【解析】(1)證明平面,利用線面垂直的性質可證得結論成立;(2)設,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可得出關于實數的等式,即可解得實數的值.【小問1詳解】證明:因為,,則且,,平面,所以為直線與平面所成的線面角,即,,故,,,平面,平面,因此,.【小問2詳解】解:設,由(1)可知且,,因為平面,,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、、,設平面的法向量為,,,則,取,可得,設平面的法向量為,,,由,取,則,由已知可得,解得.當點為線段的中點時,二面角的平面角為銳角,合乎題意.綜上所述,.19、(1);(2)【解析】(1)由題設可得,結合向量的共線坐標表示求的坐標;(2)向量的坐標運算求邊長,由余弦定理求,進而求其正弦值,再應用三角形面積公式求面積.【小問1詳解】由題設,,令,則,∴,可得,故.【小問2詳解】由(1),,,則,又,則,∴平行四邊形的面積.20、(1)(2)或【解析】(1)結合拋物線的定義求得,由此求得拋物線的方程.(2)設,根據三角形的面積列方程,求得的值,進而求得點的坐標.【小問1詳解】由拋物線的方程可得其準線方程,依拋物線的性質得,解得.∴拋物線的方程為.【小問2詳解】將代入,得.所以,直線的方程為,即.設,則點到直線的距離,又,由題意得,解得或.∴點的坐標是或.21、(1)在上單調遞減,在上單調遞增(2)【解析】(1)研究當時的導數的符號即可討論得到的單調性;(2)對原函數求導,對a的范圍分類討論即可得出答案.【小問1詳解】當時,,令,則,所以在上單調遞增.又因為,所以當時,,當時,,所以在上單調遞減,在上單調遞增.【小問2詳解】,且.①當時,由(1)可知當時,所以在上單調遞增,則,符合題意.②當時,,不符合題意,舍去.③當時,令,則,則,,當時,,所以在上單調遞減,當時,,不符合題意,舍去.綜上,a的取值范圍為.【點睛】導數是研究函數的單調性、極值(最值)最有效的工具,而函數是高中數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論