




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市同洲模范學校2025屆高三數學第一學期期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.世紀產生了著名的“”猜想:任給一個正整數,如果是偶數,就將它減半;如果是奇數,則將它乘加,不斷重復這樣的運算,經過有限步后,一定可以得到.如圖是驗證“”猜想的一個程序框圖,若輸入正整數的值為,則輸出的的值是()A. B. C. D.2.已知函數,若,使得,則實數的取值范圍是()A. B.C. D.3.給出個數,,,,,,其規律是:第個數是,第個數比第個數大,第個數比第個數大,第個數比第個數大,以此類推,要計算這個數的和.現已給出了該問題算法的程序框圖如圖,請在圖中判斷框中的①處和執行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;4.一場考試需要2小時,在這場考試中鐘表的時針轉過的弧度數為()A. B. C. D.5.下列命題中,真命題的個數為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.36.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.7.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.88.如圖是甲、乙兩位同學在六次數學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數和乙相等9.在正項等比數列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.810.過雙曲線左焦點的直線交的左支于兩點,直線(是坐標原點)交的右支于點,若,且,則的離心率是()A. B. C. D.11.若復數在復平面內對應的點在第二象限,則實數的取值范圍是()A. B. C. D.12.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.設Sn為數列{an}的前n項和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.14.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.15.已知平面向量,,且,則向量與的夾角的大小為________.16.已知全集為R,集合,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,直線不過原點且不平行于坐標軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.18.(12分)某校為了解校園安全教育系列活動的成效,對全校學生進行一次安全意識測試,根據測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記分,“不合格”記分.現隨機抽取部分學生的成績,統計結果及對應的頻率分布直方圖如下所示:等級不合格合格得分頻數624(Ⅰ)若測試的同學中,分數段內女生的人數分別為,完成列聯表,并判斷:是否有以上的把握認為性別與安全意識有關?是否合格性別不合格合格總計男生女生總計(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中,共選取人進行座談,現再從這人中任選人,記所選人的量化總分為,求的分布列及數學期望;(Ⅲ)某評估機構以指標(,其中表示的方差)來評估該校安全教育活動的成效,若,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調整安全教育方案?附表及公式:,其中.19.(12分)已知橢圓的焦距為,斜率為的直線與橢圓交于兩點,若線段的中點為,且直線的斜率為.(1)求橢圓的方程;(2)若過左焦點斜率為的直線與橢圓交于點為橢圓上一點,且滿足,問:是否為定值?若是,求出此定值,若不是,說明理由.20.(12分)已知點,且,滿足條件的點的軌跡為曲線.(1)求曲線的方程;(2)是否存在過點的直線,直線與曲線相交于兩點,直線與軸分別交于兩點,使得?若存在,求出直線的方程;若不存在,請說明理由.21.(12分)已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關于原點的對稱點為,直線交于點.(1)求橢圓方程;(2)若直線與橢圓交于另一點,且,求點的坐標.22.(10分)已知函數.(1)求的單調區間;(2)討論零點的個數.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
列出循環的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數不成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,成立,跳出循環,輸出的值為.故選:C.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.2、C【解析】試題分析:由題意知,當時,由,當且僅當時,即等號是成立,所以函數的最小值為,當時,為單調遞增函數,所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數的綜合問題.【方法點晴】本題主要考查了函數的綜合問題,其中解答中涉及到基本不等式求最值、函數的單調性及其應用、全稱命題與存在命題的應用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及轉化與化歸思想的應用,其中解答中轉化為在的最小值不小于在上的最小值是解答的關鍵.3、A【解析】
要計算這個數的和,這就需要循環50次,這樣可以確定判斷語句①,根據累加最的變化規律可以確定語句②.【詳解】因為計算這個數的和,循環變量的初值為1,所以步長應該為1,故判斷語句①應為,第個數是,第個數比第個數大,第個數比第個數大,第個數比第個數大,這樣可以確定語句②為,故本題選A.【點睛】本題考查了補充循環結構,正確讀懂題意是解本題的關鍵.4、B【解析】
因為時針經過2小時相當于轉了一圈的,且按順時針轉所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉一周為12小時,轉過的角度為,按順時針轉所形成的角為負角,所以經過2小時,時針所轉過的弧度數為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.5、C【解析】
否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數函數單調性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結構,即它的條件和結論分別是什么,然后聯系其他相關的知識進行判斷.(2)當一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.6、A【解析】
本道題繪圖發現三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結合拋物線性質可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質,難度中等.7、A【解析】
依題意可得,再根據離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題.8、B【解析】
由平均數、方差公式和極差、中位數概念,可得所求結論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數為,乙得分的中位數為,故正確.故選:.【點睛】本題考查莖葉圖的應用,考查平均數和方差等概念,培養計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題.9、B【解析】
根據題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點睛】本題考查了等比數列的計算,意在考查學生的計算能力.10、D【解析】
如圖,設雙曲線的右焦點為,連接并延長交右支于,連接,設,利用雙曲線的幾何性質可以得到,,結合、可求離心率.【詳解】如圖,設雙曲線的右焦點為,連接,連接并延長交右支于.因為,故四邊形為平行四邊形,故.又雙曲線為中心對稱圖形,故.設,則,故,故.因為為直角三角形,故,解得.在中,有,所以.故選:D.【點睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構造關于的方程,本題屬于難題.11、B【解析】
復數,在復平面內對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【點睛】本題考查了復數的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.12、D【解析】
根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、55【解析】
由求出.由,可得,兩式相減,可得數列是以1為首項,1為公差的等差數列,即求.【詳解】由題意,當n=1時,,當時,由,可得,兩式相減,可得,整理得,,即,∴數列是以1為首項,1為公差的等差數列,.故答案為:55.【點睛】本題考查求數列的前項和,屬于基礎題.14、3【解析】
在直角三角形中設,,,利用兩角差的正切公式求解.【詳解】設,,則,故.故答案為:3【點睛】此題考查在直角三角形中求角的正切值,關鍵在于合理構造角的和差關系,其本質是利用兩角差的正切公式求解.15、【解析】
由,解得,進而求出,即可得出結果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點睛】本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎知識;考查運算求解能力,屬于基礎題.16、【解析】
先化簡集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【點睛】本題主要考查集合的化簡和并集運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設直線,直線方程與橢圓方程聯立,根據韋達定理求根與系數的關系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設點的橫坐標為,直線與橢圓方程聯立求點的坐標,第二步再整理點的坐標,如果能構成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點,∴不過原點且與有兩個交點的充要條件是,由(Ⅰ)得的方程為.設點的橫坐標為.∴由得,即將點的坐標代入直線的方程得,因此.四邊形為平行四邊形當且僅當線段與線段互相平分,即∴.解得,.∵,,,∴當的斜率為或時,四邊形為平行四邊形.考點:直線與橢圓的位置關系的綜合應用【一題多解】第一問涉及中點弦,當直線與圓錐曲線相交時,點是弦的中點,(1)知道中點坐標,求直線的斜率,或知道直線斜率求中點坐標的關系,或知道求直線斜率與直線斜率的關系時,也可以選擇點差法,設,,代入橢圓方程,兩式相減,化簡為,兩邊同時除以得,而,,即得到結果,(2)對于用坐標法來解決幾何性質問題,那么就要求首先看出幾何關系滿足什么條件,其次用坐標表示這些幾何關系,本題的關鍵就是如果是平行四邊形那么對角線互相平分,即,分別用方程聯立求兩個坐標,最后求斜率.18、(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)不需要調整安全教育方案.【解析】
(I)根據題目所給數據填寫好列聯表,計算出的值,由此判斷出在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.(II)利用超幾何分布的計算公式,計算出的分布列并求得數學期望.(III)由(II)中數據,計算出,進而求得的值,從而得出該校的安全教育活動是有效的,不需要調整安全教育方案.【詳解】解:(Ⅰ)由頻率分布直方圖可知,得分在的頻率為,故抽取的學生答卷總數為,.性別與合格情況的列聯表為:是否合格性別不合格合格小計男生女生小計即在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.(Ⅱ)“不合格”和“合格”的人數比例為,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值為,.的分布列為:20151050所以.(Ⅲ)由(Ⅱ)知:.故我們認為該校的安全教育活動是有效的,不需要調整安全教育方案.【點睛】本小題主要考查列聯表獨立性檢驗,考查超幾何分布的分布列、數學期望和方差的計算,所以中檔題.19、(1).(2)為定值.過程見解析.【解析】分析:(1)焦距說明,用點差法可得=.這樣可解得,得橢圓方程;(2)若,這種特殊情形可直接求得,在時,直線方程為,設,把直線方程代入橢圓方程,后可得,然后由紡長公式計算出弦長,同時直線方程為,代入橢圓方程可得點坐標,從而計算出,最后計算即可.詳解:(1)由題意可知,設,代入橢圓可得:,兩式相減并整理可得,,即.又因為,,代入上式可得,.又,所以,故橢圓的方程為.(2)由題意可知,,當為長軸時,為短半軸,此時;否則,可設直線的方程為,聯立,消可得,,則有:,所以設直線方程為,聯立,根據對稱性,不妨得,所以.故,綜上所述,為定值.點睛:設直線與橢圓相交于兩點,的中點為,則有,證明方法是點差法:即把點坐標代入橢圓方程得,,兩式相減,結合斜率公式可得.20、(1)(2)存在,或.【解析】
(1)由得看成到兩定點的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當直線的斜率存在時,設直線點斜式方程,由,可得,再直線與橢圓聯解,利用根的判別式得到關于的一元二次方程求解.【詳解】解:設,由,,可得,即為,由,可得的軌跡是以為焦點,且的橢圓,由,可得,可得曲線的方程為;假設存在過點的直線l符合題意.當直線的斜率不存在,設方程為,可得為短軸的兩個端點,不成立;當直線的斜率存在時,設方程為,由,可得,即,可得,化為,由可得,由在橢圓內,可得直線與橢圓相交,,則化為,即為,解得,所以存在直線符合題意,且方程為或.【點睛】本題考查求軌跡方程及直線與圓錐曲線位置關系問題.(1)定義法求軌跡方程的思路:應用定義法求軌跡方程的關鍵在于由已知條件推出關于動點的等量關系式,由等量關系結合曲線定義判斷是何種曲線,再設出標準方程,用待定系數法求解;(2)解決是否存在直線的問題時,可依據條件尋找
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加強動物疫苗管理制度
- 公共管理設施管理制度
- 包裝公司運營管理制度
- 學校教師人員管理制度
- 嵌入式開發工具鏈試題及答案
- 多種規劃聯合管理制度
- 公司印刷質量管理制度
- 測試策略在多項目環境中的應用試題及答案
- 中醫二試題及答案解析
- 信息系統監理師資格考試準備試題及答案
- 2025年蘇教版數學小學四年級下冊期末真題及答案(七)
- 2025年軟件設計師考試模擬題大全試題及答案
- 和二手車合作協議書
- 商會授權運營協議書
- 石膏砂漿抹灰施工工藝流程及操作要點
- 學習公共關系2025年重要試題及答案
- 2025高考北京卷作文命題趨勢分析及范文
- 2025-2030年中國電子材料行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025年普通話水平測試考試試卷及答案
- 2025年地理高考復習 熱點專練 黑吉遼熱點01 傳統文化(解析版)
- 運維自動化流程設計-全面剖析
評論
0/150
提交評論